- #1
- 684
- 5
Why the factor of 1/2 in the Einstein-Hilbert action?
The Einstein field equation is
[tex]\frac{1}{\kappa}\left(R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}\right)=T_{\mu\nu}[/tex]
where [itex]\kappa=\frac{c^4}{8\pi G}[/itex]
This can be derived from extremizing the action
[tex]S=\int{(\mathcal{L}_{G}+\mathcal{L}_{matter})d^4x}[/tex]
with respect to variation in the metric. Typically the gravitational Lagrangian is given as
[tex]\mathcal{L}_{G}=\frac{c^4}{16\pi G}R\sqrt{-g}=\frac{1}{2\kappa}R\sqrt{-g}[/tex]
I have seen this 1/2kappa scaling of the Einstein-Hilbert action frequently in the literature. The matter Lagrangian must then be scaled in such a way that
[tex]\delta\mathcal{L}_{matter}=-\frac{1}{2}T_{\mu\nu}\delta g^{\mu\nu}[/tex]
Any idea why the 1/2s? Why not just [itex]\mathcal{L}_{G}=\frac{1}{\kappa}R\sqrt{-g}[/itex] and [itex]\delta\mathcal{L}_{matter}=-T_{\mu\nu}\delta g^{\mu\nu}[/itex] ?
The Einstein field equation is
[tex]\frac{1}{\kappa}\left(R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}\right)=T_{\mu\nu}[/tex]
where [itex]\kappa=\frac{c^4}{8\pi G}[/itex]
This can be derived from extremizing the action
[tex]S=\int{(\mathcal{L}_{G}+\mathcal{L}_{matter})d^4x}[/tex]
with respect to variation in the metric. Typically the gravitational Lagrangian is given as
[tex]\mathcal{L}_{G}=\frac{c^4}{16\pi G}R\sqrt{-g}=\frac{1}{2\kappa}R\sqrt{-g}[/tex]
I have seen this 1/2kappa scaling of the Einstein-Hilbert action frequently in the literature. The matter Lagrangian must then be scaled in such a way that
[tex]\delta\mathcal{L}_{matter}=-\frac{1}{2}T_{\mu\nu}\delta g^{\mu\nu}[/tex]
Any idea why the 1/2s? Why not just [itex]\mathcal{L}_{G}=\frac{1}{\kappa}R\sqrt{-g}[/itex] and [itex]\delta\mathcal{L}_{matter}=-T_{\mu\nu}\delta g^{\mu\nu}[/itex] ?
Last edited: