MHB The functions is equal to zero for x=0

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Functions Zero
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

We consider the following Cauchy problem

$u_t=u_{xx} \text{ in } (0,T) \times \mathbb{R} \\ u(0,x)=\phi(x) \text{ where } \phi(x)=-\phi(-x), x \in \mathbb{R} $

I want to show that $ u(t,0)=0, \forall t \geq 0 $.

We have the following theorem:

Let $\phi \in C^0(\mathbb{R}^n)$ and bounded. Then

$u(t,x)=\int_{\mathbb{R}^n} \Gamma (t,x-\xi) \phi(\xi)d{\xi} $

is the solution of the problem

$ u_t-\Delta u=0 \text{ in } (0,T) \times \mathbb{R}^n, T>0 \\ u(0,x)=\phi(x), x \in \mathbb{R}^n $.

From this we have that the solution of the given problem is

$ u(t,x)=\int_{\mathbb{R}} \Gamma(t,x-\xi) \phi(\xi) d{\xi}=-\int_{\mathbb{R}} \Gamma(t,x-\xi) \phi(-\xi) d{\xi}=\int_{\mathbb{R}}\Gamma(t,x+u) \phi(u) du$

So we have that $u(t,0)=\int_{\mathbb{R}} \Gamma(t,u) \phi(u)du$.

How can we show that the latter is equal to 0?
 
Physics news on Phys.org
Hi evinda,

If I'm not mistaken, $\Gamma(t,u)$ is an even function of $u$. Combining this with the oddness of $\phi(u)$ should do the trick.
 
Yes, we have that $\Gamma (t, x-\xi)=\frac{1}{2^n [\pi t]^{\frac{n}{2}}} e^{\frac{|x-\xi|^2}{4t}}$.

So we have that

$$u(t,x)=\int_{\mathbb{R}} \Gamma (t,x-\xi) \phi(\xi) d{\xi}$$

For $x=0$: $u(t,0)=\int_{\mathbb{R}} \Gamma (t, -\xi) \phi(\xi) d{\xi}=\int_{\mathbb{R}^n} \Gamma(t,\xi) (-\phi(-\xi)) d{\xi}=-\int_{\mathbb{R}} \Gamma(t,\xi) \phi(\xi) d{\xi}$

So we have that $\int_{\mathbb{R}} \Gamma(t,-\xi) \phi(\xi) d{\xi}=\int_{\mathbb{R}} \Gamma(t,\xi) \phi(\xi) d{\xi}=-\int_{\mathbb{R}} \Gamma(t,\xi) \phi(\xi) d{\xi} \Rightarrow \int_{\mathbb{R}} \Gamma(t,\xi) \phi(\xi) d{\xi}=0$.

Right?
 
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
3K
Replies
8
Views
4K
Replies
17
Views
6K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 25 ·
Replies
25
Views
4K
Replies
0
Views
2K