Fra said:
Just for reference the more convetional terminology for the various kinds of inferences here are, deductive vs inductive inference.
"hard contradictions" are typically what you get in deductive logic, as this deals with propositions that are true or false.
"soft contradictions" are more of the probabilistic kind, where you have various degrees of beliefs or support in certain propositions.
The history or probability theory has its roots in inductive reasoning and its philosophy. The idea was that in order to make inductive reasoning rational and objective, one can simply "count evidence", and construct a formal measure of "degree of belief". That is one way to understanding the roots of probability theory. Probability theory is thus one possible mathematical model for rational inference.
Popper was also grossly disturbed by the fact that science seemed to be an inductive process, and he wanted to "cure this" buy supress the inductive process of how to generate a new hypothesis from a falsified theory in a rational way, and instead focus on the deductive part: falsification. Ie. his idea was that the progress of science is effectively made at the falsification of a theory - this is also the deductive step - which popper liked! But needless to say this analysis is poor and inappropriate.
Obviously deductive reasoing is cleaner and easier. So if its possible, its not hard to see the preference. But unfortunately reality is not well described by pure deductive reasoning. Propositions corresponding to precesses in nature are rarely easily characterised as true or false.
The intereresting part (IMO) is the RELATION between deductive and inductive reasoning WHEN you take into acount the physical limits of the "hardware" that executes the inferences. This is exactly my personal focus, and how this relates to foundational physics, and the notion of physical law, which is deductive vs the inductive nature of "measurement", which merely "measures nature" by accounting for evidence, in an inductive way.
But almost no people think along these line, I've learned, so this is why i am an oddball here.
/Fredrik
My viewpoint is that deduction and induction are a false dichotomy, for there is an excluded middle, namely Pierce's abduction. Abduction has historically gotten a bad reputation due to it actually being an example of fallacious reasoning, but even so, it seems to be an effective way of thinking; only a puritan logicist would try to insist that fallacious reasoning was outright forbidden, but I digress.
Induction may be necessary to generalize and so generate hypotheses, but inference to the best explanation, i.e. abduction or just bluntly guessing (in perhaps a Bayesian manner) is the only way to actually select a hypothesis from a multitude of hypotheses which can then be compared to experiment; if the guessed hypothesis turns out to be false, just rinse and repeat.
Here is where my viewpoint not just diverges away from standard philosophy of science, but also from standard philosophy of mathematics: in my view not only is Pierce's abduction necessary to choose scientific hypotheses, abduction seems more or less at the basis of human reasoning itself. For example, if we observe a dark yellowish transparant liquid in a glass in a kitchen, one is easily tempted to conclude it is apple juice, while it actually may be any of a million other things, i.e. it is
possibly any of a multitude of things. Yet our intuition based on our everyday experience will tell us that it
probably is apple juice; if we for some reason doubt that, we would check it by smelling or tasting or some other means of checking and then updating our idea what it is accordingly. (NB: contrast
probability theory and
possibility theory).
But if you think about this even more carefully, we can step back and ask if the liquid was even a liquid, if the cup was even a glass, and so on. In other words, we seem to be constantly be abducing
without even being aware that we are doing so or even mistakenly believing we are deducing; the act of merely describing things we see in the world around us in words already seems to require the use of abductive reasoning.
Moreover, much of intuition also seems to be the product of abductive reasoning, which would imply that abduction lays at the heart of mathematical reasoning as well. There is actually a modern school of mathematics, namely symbolism, which seems to be arguing as much although not nearly as explicitly as I am doing here (
here is a review paper on mathematical symbolism). In any case, if this is actually true it would mean that the entire Fregean/Russellian logicist and Hilbertian formalist schools and programmes are hopelessly misguided; coincidentally, since
@bhobba mentioned him before, Wittgenstein happened to say precisely that logicism/formalism were deeply wrong views of mathematics; after having carefully thought about this issue for years, I tend to be in agreement with Wittgenstein on this.