- 860
- 365
Can I mention that researchers in LQG have themselves stated that they don't think LQG is the final answer...it's all part of the fun.
atyy said:How do you see the holographic principle? I too think it must factor in, but the way it occurs in string theory, it seems also to be tied up with unification, whereas canonical LQG seems anti-unification. Because of string theory, I tend to think that maybe the holographic principle is more fundamental, and so I tend to think canonical LQG will not work out. Do you think there's a way for holography and canonical LQG to work together?
tom.stoer said:"
The last problem is that in the construction of LQG we use global spacelike foliations which restricts the manifold not only topologically but even w.r.t. its smoothness structures. That means that in (canonical) LQG we may lose physics and that this is the reason why (canonical) LQG may essentially fail!
tom.stoer said:@marcus, right, we are talking about different time scales regarding "future of LQG".
regarding our everlasting debate on spin networks vs. foams, ...
atyy said:It's those two papers that I think make EPRL dead. It's fair to consider them lines of development, but at the same time they seem to be proposals for new models, because the old model was unsatisfactory. The new models appear unsatisfactory too, so they may be pointing towards a profusion of new models that Ashtekar was hoping against.
The future of LQG is an interesting topic. In his original post (later edited) Julian quoted Ashtekar's overview of the Loop program and then asked "what do you think is the most important direction?"julian said:This is what an oldey in LQG thinks: http://arxiv.org/pdf/1201.4598.pdf - page 27...
marcus said:If I put together Ashtekar's words and what you said in your post what I get is 3 main points:
1. LQG now carries sufficient weight for us to "take the basic ideas seriously and continue to develop them by attacking the hard conceptual and technical open issues."
2. The list of these conceptual/technical issues "is long enough to keep young researchers busy and happy for quite a while!"
3. As you originally asked, but I would put in the plural: What do you think are the most important directions?
marcus said:The of LQG is an interesting . In his post (later edited) Julian quoted Ashtekar's overview of the Loop program and then asked "what do you think is the most important direction?"
I replied by highlighting selected parts of the long Ashtekar passage in Julian's post.
It's a question that we should ask periodically. One thing to note that has bearing on the LQG is that next year's conference has begun to take shape. The normally biennial Loops conference in effect defines the field and gives a snapshot of the current status of the Loops research program. We should reflect on the people who have joined the Loops 2013 international Advisory Committee. They constitute an interesting assortment.
http://www.perimeterinstitute.ca/en/Events/Loops_13/Loops_13/
International Advisory Committee
Giovanni Ameliano-Camelia, of
Abhay Ashtekar, Pennsylvania State University
Fernando Barbero, Instituto de Estructura de la Materia
John Barrett, University of
James Bjorken, SLAC
Martin Bojowald, Pennsylvania State University
Brandenberger, McGill University
Alejandro Corichi, Pennsylvania State University
Fay Dowker, Imperial College,
Rodolfo Gambini, Instituto de Fisica Facultad de Ciendias
Steve Giddings, University of California,
Viqar Husain, University of New Brunswick
Ted Jacobson, University of Maryland
Kirill Krasnov, University of
Jerzy Lewandowski, University of Warsaw
Stefano Liberati, SISSA
Etera Livine, Ens de Lyon
Renate Loll, Universiteit
Joao Magueijo, Imperial College,
Maloney, McGill University
Matilde Marcolli, California Institute of Technology
Guillermo Mena, Instituto de Estructura de la Materia
Djordje Minic, Virginia Tech
Daniele Oriti, Albert Einstein Institute
Roberto Percacci, SISSA
Alejandro Perez, Centre de Physique Theorique
Jorge Pullin, Lousiana State University
Martin Reuter, Johannes Gutenberg Universitat
Rivasseau, Laboratoire de Physique Théorique d'Orsay
Carlo Rovelli, Centre de Physique Theorique
Thiemann, Institut für Theoretische Physik III
William Unruh,
To make the mix visual, I colored different areas of expertise:
Loop, not colored
Competing QG theories orange (Spectral Geometry, AsymSafe, CDT, CausalSets...)
QG phenomenology (both concrete and speculative) green,
magenta
with blue for uncategorized all-purpose great people.
16 primarily loop research (with interrelated spinfoam, spinnorial versions, GFT, TQFT)
6 specializing in other QG programs (spectral, asymsafe, triangulations, causal sets)
3 primarily phenomenology---ideas (both solid and speculative) related to testing.
4 string
3 uncategorized blue
Totaling 32, so just about half are from what is usually considered Loop community.