The joint probability - two coins

  • Thread starter Thread starter docnet
  • Start date Start date
  • Tags Tags
    Joint Probability
AI Thread Summary
The discussion focuses on calculating the joint probability mass function for two coins, X and Y, revealing values such as p_{X,Y}(1,1) = 3/8 and p_{X,Y}(0,0) = 1/8. It also covers the marginal distributions, showing that p_X(1) and p_X(0) both equal 1/2, while p_Y(1) is 3/4 and p_Y(0) is 1/4. The expected value of Y is calculated as E(Y) = 3/4, and the expected value of (X-0.5)Y is determined to be 0. The conversation highlights the importance of correctly applying probability concepts and formulas, with participants verifying calculations and discussing covariance.
docnet
Messages
796
Reaction score
488
Homework Statement
.
Relevant Equations
.
Screen Shot 2021-11-26 at 3.50.45 PM.png
(a)

The probability mass function of X and Y:

$$p_{X,Y}(1,1)= \frac{1}{2}\cdot \frac{3}{4}=\frac{3}{8}$$
$$p_{X,Y}(1,0)=\frac{1}{2}\cdot \frac{1}{4}=\frac{1}{8}$$
$$p_{X,Y}(0,1)= \frac{1}{2}\cdot \frac{3}{4}=\frac{3}{8}$$
$$p_{X,Y}(0,0)= \frac{1}{2}\cdot \frac{1}{4}=\frac{1}{8}$$

or

$$
p_{X,Y}(a,b)=
\begin{cases}
\frac{3}{8} & (a,b)=(1,1) \quad \text{or}\quad(a,b)=(0,1) \\
\frac{1}{8} & (a,b)=(1,0) \quad \text{or}\quad(a,b)=(0,0)
\end{cases}$$

(b)

The marginal distribution of X is

$$p_X(1)=p_{X,Y}(1,0)+p_{X,Y}(1,1)=\frac{1}{2}\frac{3}{4}+\frac{1}{2}\frac{1}{4}=\frac{1}{2}$$
$$p_X(0)=p_{X,Y}(0,0)+p_{X,Y}(0,1)=\frac{1}{2}\frac{1}{4}+\frac{1}{2}\frac{3}{4}=\frac{1}{2}$$

The marginal distribution of Y is

$$p_Y(1)=p_{X,Y}(0,1)+p_{X,Y}(1,1)=\frac{1}{2}\frac{3}{4}+\frac{1}{2}\frac{1}{4}=\frac{3}{4}$$
$$p_Y(0)=p_{X,Y}(0,0)+p_{X,Y}(1,0)=\frac{1}{2}\frac{1}{4}+\frac{1}{2}\frac{3}{4}=\frac{1}{4}$$

(c)

The expected value of Y is

$$E(Y)=1\cdot p_Y(1)+0\cdot p_Y(0)=\frac{3}{4}$$

(d)

$$E((X-0.5)\times Y)=\sum\limits_{(a,b)}(a-.5)bp_{X,Y}(a,b)$$
$$(1-0.5)(1)p_{X,Y}(1,1)+(1-0.5)(0)p_{X,Y}(1,0)+$$
$$(0-0.5)(1)p_{X,Y}(0,1)+(0-0.5)(0)p_{X,Y}(0,0)=$$
$$\frac{1}{2}\cdot\frac{3}{8}+0-\frac{1}{2}\cdot \frac{3}{8}+0=0$$
 
Physics news on Phys.org
docnet said:
Homework Statement:: .
Relevant Equations:: .

View attachment 293161(a)

The probability mass function of X and Y:

$$p_{X,Y}(1,1)= \frac{1}{2}\cdot \frac{3}{4}=\frac{3}{8}$$
$$p_{X,Y}(1,0)=\frac{1}{2}\cdot \frac{1}{4}=\frac{1}{8}$$
$$p_{X,Y}(0,1)= \frac{1}{2}\cdot \frac{3}{4}=\frac{3}{8}$$
$$p_{X,Y}(0,0)= \frac{1}{2}\cdot \frac{1}{4}=\frac{1}{8}$$
That's not what I get. If ##X = 1##, then we toss the unbiased coin (coin 1) again.
 
PeroK said:
That's not what I get. If ##X = 1##, then we toss the unbiased coin (coin 1) again.

yes! the problem I solved isn't same as the problem in the prompt :(

but don't worry, i think i know what the problem is asking, and how to solve it
 
OK so here's what I have

(a)

$$P_{X,Y}(1,1)=\frac{1}{2}\frac{1}{2}=\frac{1}{4}$$
$$P_{X,Y}(1,0)=\frac{1}{2}\frac{1}{2}=\frac{1}{4}$$
$$P_{X,Y}(0,1)=\frac{1}{2}\frac{3}{4}=\frac{3}{8}$$
$$P_{X,Y}(1,1)=\frac{1}{2}\frac{1}{4}=\frac{1}{8}$$(b)

$$P_X(1)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$$
$$P_X(0)=\frac{3}{8}+\frac{1}{8}=\frac{1}{2}$$
$$P_Y(1)=\frac{3}{8}+\frac{1}{4}=\frac{5}{8}$$
$$P_Y(0)=\frac{1}{8}+\frac{1}{4}=\frac{3}{8}$$

(c)

$$E(Y)=\frac{5}{8}+0\cdot \frac{3}{8}=\frac{5}{8}$$

(d)

$$E((X-.5)\times Y)=(\frac{1}{2}\frac{1}{2}-\frac{1}{2}\frac{1}{2})\frac{5}{8}=0$$
 
It looks right apart from the answer to d). Note that in general ##E(XY) \neq E(X)E(Y)##. (Another simple but erroneous calculation on your part!) But, in general, ##E(X + Y) = E(X) + E(Y)##. That gives you two ways to do part d): go through the four options, or use the expected value of a sum.
 
@PeroK thank you :) is this what you mean?

Screen Shot 2021-11-28 at 11.23.37 AM.png

using the formula:
$$E((X-.5)Y)=\frac{1}{8}-\frac{3}{16}=-\frac{1}{16}$$ 😒using linearity and the definition of covariance:

$$E((X-.5)Y)=E(XY)-\frac{5}{16}$$
Screen Shot 2021-11-28 at 12.49.57 PM.png

$$E(XY)=cov(X,Y)+E(X)E(Y)=-\frac{1}{16}+\frac{5}{16}$$

$$E((X-.5) Y)=-\frac{1}{16}$$ 😇
 

Attachments

  • Screen Shot 2021-11-28 at 11.24.17 AM.png
    Screen Shot 2021-11-28 at 11.24.17 AM.png
    2.8 KB · Views: 167
Last edited:
  • Like
Likes PeroK
Yes, it's good to see you do it both ways and get the same answer!

Note: the quick and valid way to get ##E(XY)## is to note that ##XY## is only non-zero when ##X = Y = 1##, which happens with probability ##1/4##. Hence ##E(XY) = \frac 1 4##.
 
  • Love
Likes docnet
Back
Top