The joint probability - two coins

  • Thread starter Thread starter docnet
  • Start date Start date
  • Tags Tags
    Joint Probability
Click For Summary

Homework Help Overview

The discussion revolves around the joint probability of two coins, specifically focusing on the probability mass function of random variables X and Y, their marginal distributions, and expected values. Participants are analyzing the calculations and interpretations related to these probabilities.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants present various calculations for the joint probability mass function and marginal distributions, with some expressing confusion over the setup and assumptions of the problem. There are attempts to clarify the expected values and relationships between the variables.

Discussion Status

There is an ongoing exploration of different interpretations of the problem, with some participants questioning the accuracy of their calculations and others providing feedback on the reasoning. Multiple methods for calculating expected values are being discussed, and some participants are validating their approaches.

Contextual Notes

Some participants indicate that their initial understanding of the problem may have been incorrect, leading to confusion in their calculations. There is also mention of the need to consider the conditions under which certain probabilities are calculated.

docnet
Messages
796
Reaction score
486
Homework Statement
.
Relevant Equations
.
Screen Shot 2021-11-26 at 3.50.45 PM.png
(a)

The probability mass function of X and Y:

$$p_{X,Y}(1,1)= \frac{1}{2}\cdot \frac{3}{4}=\frac{3}{8}$$
$$p_{X,Y}(1,0)=\frac{1}{2}\cdot \frac{1}{4}=\frac{1}{8}$$
$$p_{X,Y}(0,1)= \frac{1}{2}\cdot \frac{3}{4}=\frac{3}{8}$$
$$p_{X,Y}(0,0)= \frac{1}{2}\cdot \frac{1}{4}=\frac{1}{8}$$

or

$$
p_{X,Y}(a,b)=
\begin{cases}
\frac{3}{8} & (a,b)=(1,1) \quad \text{or}\quad(a,b)=(0,1) \\
\frac{1}{8} & (a,b)=(1,0) \quad \text{or}\quad(a,b)=(0,0)
\end{cases}$$

(b)

The marginal distribution of X is

$$p_X(1)=p_{X,Y}(1,0)+p_{X,Y}(1,1)=\frac{1}{2}\frac{3}{4}+\frac{1}{2}\frac{1}{4}=\frac{1}{2}$$
$$p_X(0)=p_{X,Y}(0,0)+p_{X,Y}(0,1)=\frac{1}{2}\frac{1}{4}+\frac{1}{2}\frac{3}{4}=\frac{1}{2}$$

The marginal distribution of Y is

$$p_Y(1)=p_{X,Y}(0,1)+p_{X,Y}(1,1)=\frac{1}{2}\frac{3}{4}+\frac{1}{2}\frac{1}{4}=\frac{3}{4}$$
$$p_Y(0)=p_{X,Y}(0,0)+p_{X,Y}(1,0)=\frac{1}{2}\frac{1}{4}+\frac{1}{2}\frac{3}{4}=\frac{1}{4}$$

(c)

The expected value of Y is

$$E(Y)=1\cdot p_Y(1)+0\cdot p_Y(0)=\frac{3}{4}$$

(d)

$$E((X-0.5)\times Y)=\sum\limits_{(a,b)}(a-.5)bp_{X,Y}(a,b)$$
$$(1-0.5)(1)p_{X,Y}(1,1)+(1-0.5)(0)p_{X,Y}(1,0)+$$
$$(0-0.5)(1)p_{X,Y}(0,1)+(0-0.5)(0)p_{X,Y}(0,0)=$$
$$\frac{1}{2}\cdot\frac{3}{8}+0-\frac{1}{2}\cdot \frac{3}{8}+0=0$$
 
Physics news on Phys.org
docnet said:
Homework Statement:: .
Relevant Equations:: .

View attachment 293161(a)

The probability mass function of X and Y:

$$p_{X,Y}(1,1)= \frac{1}{2}\cdot \frac{3}{4}=\frac{3}{8}$$
$$p_{X,Y}(1,0)=\frac{1}{2}\cdot \frac{1}{4}=\frac{1}{8}$$
$$p_{X,Y}(0,1)= \frac{1}{2}\cdot \frac{3}{4}=\frac{3}{8}$$
$$p_{X,Y}(0,0)= \frac{1}{2}\cdot \frac{1}{4}=\frac{1}{8}$$
That's not what I get. If ##X = 1##, then we toss the unbiased coin (coin 1) again.
 
PeroK said:
That's not what I get. If ##X = 1##, then we toss the unbiased coin (coin 1) again.

yes! the problem I solved isn't same as the problem in the prompt :(

but don't worry, i think i know what the problem is asking, and how to solve it
 
OK so here's what I have

(a)

$$P_{X,Y}(1,1)=\frac{1}{2}\frac{1}{2}=\frac{1}{4}$$
$$P_{X,Y}(1,0)=\frac{1}{2}\frac{1}{2}=\frac{1}{4}$$
$$P_{X,Y}(0,1)=\frac{1}{2}\frac{3}{4}=\frac{3}{8}$$
$$P_{X,Y}(1,1)=\frac{1}{2}\frac{1}{4}=\frac{1}{8}$$(b)

$$P_X(1)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$$
$$P_X(0)=\frac{3}{8}+\frac{1}{8}=\frac{1}{2}$$
$$P_Y(1)=\frac{3}{8}+\frac{1}{4}=\frac{5}{8}$$
$$P_Y(0)=\frac{1}{8}+\frac{1}{4}=\frac{3}{8}$$

(c)

$$E(Y)=\frac{5}{8}+0\cdot \frac{3}{8}=\frac{5}{8}$$

(d)

$$E((X-.5)\times Y)=(\frac{1}{2}\frac{1}{2}-\frac{1}{2}\frac{1}{2})\frac{5}{8}=0$$
 
It looks right apart from the answer to d). Note that in general ##E(XY) \neq E(X)E(Y)##. (Another simple but erroneous calculation on your part!) But, in general, ##E(X + Y) = E(X) + E(Y)##. That gives you two ways to do part d): go through the four options, or use the expected value of a sum.
 
@PeroK thank you :) is this what you mean?

Screen Shot 2021-11-28 at 11.23.37 AM.png

using the formula:
$$E((X-.5)Y)=\frac{1}{8}-\frac{3}{16}=-\frac{1}{16}$$ 😒using linearity and the definition of covariance:

$$E((X-.5)Y)=E(XY)-\frac{5}{16}$$
Screen Shot 2021-11-28 at 12.49.57 PM.png

$$E(XY)=cov(X,Y)+E(X)E(Y)=-\frac{1}{16}+\frac{5}{16}$$

$$E((X-.5) Y)=-\frac{1}{16}$$ 😇
 

Attachments

  • Screen Shot 2021-11-28 at 11.24.17 AM.png
    Screen Shot 2021-11-28 at 11.24.17 AM.png
    2.8 KB · Views: 186
Last edited:
  • Like
Likes   Reactions: PeroK
Yes, it's good to see you do it both ways and get the same answer!

Note: the quick and valid way to get ##E(XY)## is to note that ##XY## is only non-zero when ##X = Y = 1##, which happens with probability ##1/4##. Hence ##E(XY) = \frac 1 4##.
 
  • Love
Likes   Reactions: docnet

Similar threads

Replies
12
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K