The last step of this Green's function proof is not clear

  • Context: Undergrad 
  • Thread starter Thread starter Hill
  • Start date Start date
  • Tags Tags
    Green's function
Click For Summary
SUMMARY

The forum discussion clarifies the final step in the derivation of the Green's function in quantum field theory, specifically in the context of the Schrödinger equation as presented in "Quantum Field Theory for the Gifted Amateur" by Lancaster and Blundell. The key conclusion is that the expression ##\sum_n \phi_n(x) \phi_n^*(y)## simplifies to ##\delta(x-y)## due to the completeness relation of the eigenfunctions ##\phi_n## of the Hamiltonian. This is established by integrating against a wavefunction and applying the orthonormality of the eigenstates.

PREREQUISITES
  • Understanding of Green's functions in quantum mechanics
  • Familiarity with eigenfunctions and eigenstates of the Hamiltonian
  • Knowledge of orthonormality and completeness relations
  • Basic grasp of integration techniques in functional analysis
NEXT STEPS
  • Study the completeness relation of eigenstates in quantum mechanics
  • Explore the properties of delta functions in mathematical physics
  • Learn about the derivation and applications of Green's functions
  • Investigate the role of orthonormal bases in quantum mechanics
USEFUL FOR

Physicists, graduate students in quantum mechanics, and researchers interested in quantum field theory and the mathematical foundations of quantum mechanics.

Hill
Messages
748
Reaction score
591
TL;DR
In QFTftGA, Lancaster and Blundell show in a (1+1) dimensional spacetime that the function ##G^+## is a Green's function for the Schrodinger equation. I need the last step of this derivation to be clarified.
Here is the conclusion of the derivation in question:

1702121461419.png


where ##\phi_n## are eigenfunctions of the Hamiltonian.

I don't see how at the very end the ##\sum ...## becomes ##\delta (x-y)##. What do I miss?
 
Physics news on Phys.org
P.S. I thought of a way, but not sure in it:

1. For ##t_x-t_y \neq 0##, the expression vanishes because of the ##\delta (t_x-t_y)## in front.
2. For ##t_x-t_y = 0##,
##\sum_n \phi_n(x) \phi_n^*(y)=\sum_n \langle x| n\rangle \langle n|y \rangle = \langle x|y \rangle = \delta(x-y)##

I am not sure because the eigenstates ##|n \rangle## in the two brackets are at different times.
 
Hill said:
the eigenstates |n⟩ in the two brackets are at different times
Oh, sorry, they are not, in the case 2.
Solved.
Forget about it :smile: .
 
  • Like
Likes   Reactions: PeroK
For future reference: Hit the identity with a wavefunction f(y) and integrate over y. The integral gives a factor
</phi_n | f> giving the expansion of f(x) in the {/phi_n} basis. This is exactly what a delta function would do.

(On the phone so no fancy tex code)

Weird that the authors don't explain these steps in a book for "amateurs".
 
haushofer said:
For future reference: Hit the identity with a wavefunction f(y) and integrate over y. The integral gives a factor
</phi_n | f> giving the expansion of f(x) in the {/phi_n} basis. This is exactly what a delta function would do.
I'm sorry, could you elaborate, please? I did not understand it in words.
 
We start from the sum ##\sum_n \phi_n (x) \phi^*_n (y)## where the ##\phi_n (x)## form an orthonormal basis. Hit this expression with a function f(y) and integrate over y:

##\int \sum_n \phi_n (x) \phi^*_n (y) f(y)dy##

Now use that

##\int \phi^*_n (y) f(y)dy = <\phi_n | f> = c_n## ("Fourier's trick)

such that

##\int \sum_n \phi_n (x) \phi^*_n (y) f(y)dy = \sum_n c_n \phi_n (x) ##

This is just the expansion of ##f(x)##, so indeed

##\int \sum_n \phi_n (x) \phi^*_n (y) f(y)dy = f(x)##

With other words:

##\int \sum_n \phi_n (x) \phi^*_n (y) f(y)dy = \int \delta (x-y)f(y)dy##

So under the integral sign we have the equality

##\sum_n \phi_n (x) \phi^*_n (y) = \delta(x-y)##

:)
 
  • Like
Likes   Reactions: Hill
haushofer said:
We start from the sum ##\sum_n \phi_n (x) \phi^*_n (y)## where the ##\phi_n (x)## form an orthonormal basis. Hit this expression with a function f(y) and integrate over y:

##\int \sum_n \phi_n (x) \phi^*_n (y) f(y)dy##

Now use that

##\int \phi^*_n (y) f(y)dy = <\phi_n | f> = c_n## ("Fourier's trick)

such that

##\int \sum_n \phi_n (x) \phi^*_n (y) f(y)dy = \sum_n c_n \phi_n (x) ##

This is just the expansion of ##f(x)##, so indeed

##\int \sum_n \phi_n (x) \phi^*_n (y) f(y)dy = f(x)##

With other words:

##\int \sum_n \phi_n (x) \phi^*_n (y) f(y)dy = \int \delta (x-y)f(y)dy##

So under the integral sign we have the equality

##\sum_n \phi_n (x) \phi^*_n (y) = \delta(x-y)##

:)
Thank you!
 
Hill said:
TL;DR Summary: In QFTftGA, Lancaster and Blundell show in a (1+1) dimensional spacetime that the function ##G^+## is a Green's function for the Schrödinger equation. I need the last step of this derivation to be clarified.

Here is the conclusion of the derivation in question:

View attachment 336963

where ##\phi_n## are eigenfunctions of the Hamiltonian.

I don't see how at the very end the ##\sum ...## becomes ##\delta (x-y)##. What do I miss?
Because of the factor ##\delta(t_x-t_y)## you can set ##t_x=t_y## in the rest of the expression on the right-hand side. This leads to
$$\sum_n \phi_n(x) \phi_n^*(y)=\sum_n \langle x|\phi_n \rangle \langle \phi_n |y\rangle = \langle x|y \rangle= \delta(x-y),$$
where I made use of the completeness of the energy eigenstates,
$$\sum_n |\phi_n \rangle \langle \phi_n=\hat{1},$$
and the normalization of the (generalized) position eigenvectors "to a ##\delta## distribution".
 
  • Like
Likes   Reactions: haushofer and Hill

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K