- #1

- 129

- 2

[tex]f(x)=\frac{1}{x^2+x+1}[/tex]

Let [itex]f(x)=\sum_{n=0}^{\infty}c_nx^n[/itex] be the Maclaurin series representation for [itex]f(x)[/itex]. Find the value of [itex]c_{36}-c_{37}+c_{38}[/itex].

After working out the fraction, I arrived at the following,

[tex]f(x)=\sum_{n=0}^{\infty}x^{3n}-\sum_{n=0}^{\infty}x^{3n+1}[/tex]

But I dun get how to compare this to the the form given in the question to get the answer...