The normal and anomalous Zeeman effect

Click For Summary
The discussion clarifies the differences between the normal and anomalous Zeeman effects, focusing on the conservation of angular momentum and the interdependence of quantum numbers. In the normal Zeeman effect, LS-coupling ensures that J (total angular momentum) is conserved, with L and S remaining fixed. Conversely, in the anomalous Zeeman effect, while J remains conserved, the individual values of L and S can change over time, leading to mixed g factors. This results in different magnetic moments compared to the normal Zeeman effect, where L and S retain their values. Understanding these distinctions is crucial for grasping the underlying physics of both phenomena.
Hymne
Messages
87
Reaction score
1
Hi! I have difficulties seeing the cause that make these to concepts diffret. Haken and Wolf writes about the last one:"One speaks of the anomalous Zeeman effect when the angular momentum and magnetic moment of the two terms between which an optical transistion occurs cannot be described by just one of the two quantum numbers s or l., but are determined by both."However in the nomal Zeeman we used the J as a quantum number and therefore used both?! I am not getting this right..
 
Physics news on Phys.org
Hymne said:
However in the nomal Zeeman we used the J as a quantum number and therefore used both?! I am not getting this right..

It's not whether you use J, L and S, but their interdependence. With the ordinary Zeeman effect, you have LS-coupling, so J is conserved and J = L + S. So L and S (the total angular momentum and spin) don't change independently of each other.
 
Yeah, but what is the case in the anomalous Zeeman effect then? J is still conserved right?
 
In the case of the anomalous Zeeman effect, J=L+S is conserved.
(For example, in the case of L=1, and S=1/2, J=1+1/2=3/2 ...)

But each value of L and S is not conserved.
(Each value S and L is changing with time. (For example, S=1/2-0.1, L=1+0.1...)
But the sum of L and S must be conserved. (For example, J=S+L= (1/2-0.1) + (1+0.1) =3/2)...)

The spin g factor is 2, and orbital g factor is 1.
So in the anomalous Zeeman effect, these g factors of 1 and 2 are mixed, and can be different from 1 and 2, because each direction(value) of L and S is changing by the precession.

In the ordinary Zeeman effect or Paschen Back effect, the directions(values) of L and S are conserved (L=1, S=1/2)
So the g factor is 1 or 2, and the magnetic moments are the same as the Normal Zeeman effect. (1 x 1 = 2 x 1/2 = 1)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
3K
Replies
1
Views
3K