as i recall, it is analysis on a group, and these involve different groups. so the series is a special case (on the "circle group" R/Z ≈ S^1) of the transform, which applies to a large variety of groups. sorry for a tantalizing but non explicit "answer", or merely comment rather.
ah yes, a little more is coming back: the transform relates analysis on a group with analysis on its "dual group". (The dual of a locally compact abelian group is the group of continuous homomorphisms from the group into the circle group.)
https://link.springer.com/chapter/10.1007/0-387-27561-4_7
And it seems the integers are the dual of the circle group, (a periodic function is a function on the circle, and a series is a function on the integers), while the real line group R is dual to itself. Thus the transform of a periodic function, i.e. a function on the circle, is a function on the integers, i.e. a (fourier) series, and the two functions, if nice enough, determine each other. The transform of a (perhaps rapidly vanishing at infinity) function on the line, is another (rapidly vanishing) function on the line, and the two determine each other. Since rapidly vanishing functions are dense in the lebesgue integrable functions this correspondence extends to integrable functions. [See Lang, Analysis II, chapter XIV.]
the point is the transform sets up a one - one correspondence between functions on a group and functions on its dual group, and the group properties cause certain operations on one space of functions to correspond to different operations on the functions in the other space. In some classical examples differentiation corresponds to multiplication, so solving differential equations translates into solving algebraic equations. In other variations on this theme, solutions of one more difficult differential equation transform into solutions of an easier differential equation, e.g. in the case of "Paley Wiener" type transforms. (One such transform I recall essentially changes ∂/∂zbar into ∂/∂t, changing the job of finding holomorphic solutions to a certain equation, into the easier job of finding solutions of another equation, that are constant in t.) There is also an exotic version in algebraic geometry, the "Fourier-Mukai" transform, relating derived categories of sheaves on abelian varieties (compact complex groups), and their duals, that apparently has a relevance to string theory.
for a brief intro to duality, try this article, at least the first few paragraphs.
https://en.wikipedia.org/wiki/Pontryagin_duality
and for the very diligent reader, here is a historical survey of the origins of the whole subject (harmonic analysis) in number theory, probability and mathematical physics, especially section 8 beginning on page 565.
https://www.ams.org/journals/bull/1980-03-01/S0273-0979-1980-14783-7/S0273-0979-1980-14783-7.pdf
and for the derived category stuff: (not suitable for 5 year olds [nor me])
https://en.wikipedia.org/wiki/Fourier–Mukai_transform
Although very abstract, this theory has useful consequences: a classical theorem, due to R. Torelli, of great interest in algebraic geometry says that an algebraic curve is entirely determined by its "jacobian variety", a compact complex group with a certain subvariety called the theta divisor (defined as the zeroes of a certain holomorphic, almost periodic, Fourier like theta-series of exponentials
https://mathworld.wolfram.com/RiemannThetaFunction.html).
This next article shows that the Fourier mukai transform of the jacobian essentially changes the theta divisor into the original curve, thus proving the theorem.
https://arxiv.org/abs/math/9811136
oops, sorry. I guess this is both more (and less) than you wanted to know. But thanks for the fun question. And maybe someone more expert (like an analyst) will give a better, more focussed, answer. But I do hope the idea of groups and dual groups helps relate the two concepts you asked about. what do you think
@docnet?