The representation matrix for alpha and beta in Dirac equation

Click For Summary
SUMMARY

The discussion focuses on the representation matrices for alpha (α) and beta (β) in the Dirac equation, specifically the 4-dimensional representation of β as β = \begin{pmatrix}\mathbf I & \mathbf 0 \\ \mathbf 0 & -\mathbf I\end{pmatrix} and α as α_i = \begin{pmatrix}\mathbf A_i & \mathbf B_i \\ \mathbf C_i & \mathbf D_i\end{pmatrix}. Key findings include that from the anti-commutation relation ∑{α_i, β} = 0, it follows that A_i = D_i = 0, and from α_i^2 = 1, it is derived that C_i = B_i^{-1} and C_i = B_i^{\dagger}. The discussion raises questions about the symmetry of α_i and β, and the properties of α_i, particularly in the context of their Hermitian nature.

PREREQUISITES
  • Understanding of the Dirac equation and its significance in quantum mechanics.
  • Familiarity with matrix algebra, particularly Hermitian matrices.
  • Knowledge of anti-commutation relations in quantum mechanics.
  • Basic concepts of eigenvalues and determinants in linear algebra.
NEXT STEPS
  • Explore the properties of Hermitian matrices in quantum mechanics.
  • Study the implications of anti-commutation relations in particle physics.
  • Learn about the role of representation theory in quantum field theory.
  • Investigate the generalization of 4-dimensional representations in higher-dimensional spaces.
USEFUL FOR

Physicists, mathematicians, and students studying quantum mechanics, particularly those focusing on the Dirac equation and its applications in particle physics.

Haorong Wu
Messages
419
Reaction score
90
Homework Statement
Prove that in the presentation of ##\beta##,

##\mathbf \alpha=\begin{pmatrix}\mathbf 0 & \mathbf \sigma \\ \mathbf \sigma & \mathbf 0\end{pmatrix} ## and ## \beta=\begin{pmatrix}\mathbf I & \mathbf 0 \\ \mathbf0 & -\mathbf I\end{pmatrix} ,##

where ##\mathbf \alpha## and ##\beta## are in the Dirac equation, in which ##H=c \mathbf \alpha \cdot \mathbf p +\beta m c^2##.
Relevant Equations
1. ##\mathbf \alpha## and ##\beta## are Hermitian.
2. ##\{ \mathbf \alpha_i, \mathbf \alpha_j \}=0##, if ##i\ne j##.
3. ##\{ \mathbf \alpha_i, \beta\}=0##.
4. ##\alpha_i^2=\beta^2=1##.
5. The traces of ##\mathbf \alpha## and ##\beta## are zero.
6. The eigenvalues of them are ##1## or ##-1##.
In the 4-dimensional representation of ##\beta##, ## \beta=\begin{pmatrix}\mathbf I & \mathbf 0 \\ \mathbf0 & -\mathbf I\end{pmatrix} ,## and we can suppose ## \alpha_i=\begin{pmatrix}\mathbf A_i & \mathbf B_i \\ \mathbf C_i & \mathbf D_i\end{pmatrix} ##.

From the anti-commutation relation ##\{ \mathbf \alpha_i, \beta\}=0##, I can derive ##A_i=D_i=0##.

From ##\alpha_i^2=1##, I can have ##C_i=B_i^{-1}##. Furthermore, from the Hermiticity, I can have ##C_i=B_i^{\dagger}##.

But I could not find a way to prove that ##C_i=B_i##. The relation ##\{ \mathbf \alpha_i, \mathbf \alpha_j \}=0## for ##i\ne j## does not help.

Should ##\alpha_i## and ##\beta## always be symmetric? This is not given in the problem. Is there any other properties of ##\alpha_i##?

I have looked in some books. These matrices are just given directly without proof.
 
Physics news on Phys.org
Say
<br /> B=<br /> \begin{pmatrix}<br /> a &amp; b \\<br /> c &amp; -a \\<br /> \end{pmatrix}<br />
with trace=0 used.
<br /> C=B^{-1}=\frac{-1}{det \ B}<br /> \begin{pmatrix}<br /> a &amp; b \\<br /> c &amp; -a \\<br /> \end{pmatrix}<br /> =\frac{-1}{det \ B} B
det \ B=-a^2-bc=-1
because B has eigenvalue 1 and -1 so
(a-\lambda)(-a-\lambda)-bc=0
for ##\lambda=\pm1##. As ##\alpha## is Hermitian we observe a is real and ## c=b^*##. so
a^2+|b|^2=1
 
Last edited:
@anuttarasammyak Thanks! I forgot the determinant. I will try to generalize it to 4 dimensional case.
 
Further to post #2 as general expression
<br /> B=C=<br /> \begin{pmatrix}<br /> cos\theta &amp; sin\theta e^{-i\phi} \\<br /> sin\theta e^{i\phi} &amp; -cos\theta \\<br /> \end{pmatrix}<br /> =\cos\theta\ \sigma_z+sin\theta cos\phi\ \sigma_x+sin\theta sin\phi\ \sigma_y
that seems like unit vector in polar coordinates.
 
  • Like
Likes   Reactions: Haorong Wu

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K