The representation matrix for alpha and beta in Dirac equation

Click For Summary

Homework Help Overview

The discussion revolves around the representation matrices for the alpha and beta matrices in the context of the Dirac equation, specifically focusing on their properties and relationships in a 4-dimensional representation.

Discussion Character

  • Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants explore the implications of anti-commutation relations and Hermiticity on the matrices. Questions arise regarding the symmetry of the alpha and beta matrices and the properties that can be derived from their definitions.

Discussion Status

The discussion is ongoing, with participants providing insights and attempting to generalize findings. Some guidance has been offered regarding the determinant and properties of the matrices, but no consensus has been reached on the symmetry or specific properties of the alpha matrices.

Contextual Notes

There is mention of constraints such as the lack of explicit properties given in the problem statement and the challenge of proving certain relationships between the matrices.

Haorong Wu
Messages
419
Reaction score
90
Homework Statement
Prove that in the presentation of ##\beta##,

##\mathbf \alpha=\begin{pmatrix}\mathbf 0 & \mathbf \sigma \\ \mathbf \sigma & \mathbf 0\end{pmatrix} ## and ## \beta=\begin{pmatrix}\mathbf I & \mathbf 0 \\ \mathbf0 & -\mathbf I\end{pmatrix} ,##

where ##\mathbf \alpha## and ##\beta## are in the Dirac equation, in which ##H=c \mathbf \alpha \cdot \mathbf p +\beta m c^2##.
Relevant Equations
1. ##\mathbf \alpha## and ##\beta## are Hermitian.
2. ##\{ \mathbf \alpha_i, \mathbf \alpha_j \}=0##, if ##i\ne j##.
3. ##\{ \mathbf \alpha_i, \beta\}=0##.
4. ##\alpha_i^2=\beta^2=1##.
5. The traces of ##\mathbf \alpha## and ##\beta## are zero.
6. The eigenvalues of them are ##1## or ##-1##.
In the 4-dimensional representation of ##\beta##, ## \beta=\begin{pmatrix}\mathbf I & \mathbf 0 \\ \mathbf0 & -\mathbf I\end{pmatrix} ,## and we can suppose ## \alpha_i=\begin{pmatrix}\mathbf A_i & \mathbf B_i \\ \mathbf C_i & \mathbf D_i\end{pmatrix} ##.

From the anti-commutation relation ##\{ \mathbf \alpha_i, \beta\}=0##, I can derive ##A_i=D_i=0##.

From ##\alpha_i^2=1##, I can have ##C_i=B_i^{-1}##. Furthermore, from the Hermiticity, I can have ##C_i=B_i^{\dagger}##.

But I could not find a way to prove that ##C_i=B_i##. The relation ##\{ \mathbf \alpha_i, \mathbf \alpha_j \}=0## for ##i\ne j## does not help.

Should ##\alpha_i## and ##\beta## always be symmetric? This is not given in the problem. Is there any other properties of ##\alpha_i##?

I have looked in some books. These matrices are just given directly without proof.
 
Physics news on Phys.org
Say
<br /> B=<br /> \begin{pmatrix}<br /> a &amp; b \\<br /> c &amp; -a \\<br /> \end{pmatrix}<br />
with trace=0 used.
<br /> C=B^{-1}=\frac{-1}{det \ B}<br /> \begin{pmatrix}<br /> a &amp; b \\<br /> c &amp; -a \\<br /> \end{pmatrix}<br /> =\frac{-1}{det \ B} B
det \ B=-a^2-bc=-1
because B has eigenvalue 1 and -1 so
(a-\lambda)(-a-\lambda)-bc=0
for ##\lambda=\pm1##. As ##\alpha## is Hermitian we observe a is real and ## c=b^*##. so
a^2+|b|^2=1
 
Last edited:
@anuttarasammyak Thanks! I forgot the determinant. I will try to generalize it to 4 dimensional case.
 
Further to post #2 as general expression
<br /> B=C=<br /> \begin{pmatrix}<br /> cos\theta &amp; sin\theta e^{-i\phi} \\<br /> sin\theta e^{i\phi} &amp; -cos\theta \\<br /> \end{pmatrix}<br /> =\cos\theta\ \sigma_z+sin\theta cos\phi\ \sigma_x+sin\theta sin\phi\ \sigma_y
that seems like unit vector in polar coordinates.
 
  • Like
Likes   Reactions: Haorong Wu

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K