MHB The Royal Primate's question at Yahoo Answers regarding convergence of a series

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

The Royal Primate at Yahoo Answers said:
Need help determining whether a series converges or diverges?

I have the following series:

Sigma (from n=1 to infinity): (n^3 + n^2)/(5n^4 + 3)

and I need to determine if it converges or diverges. I am given that the series diverges by the Limit Comparison Test with the Harmonic Series but I am not sure how to do the work to get there.

Thanks!
Update : I need to find the prototype of this series, would that just be (n^3)/(5n^4) = (1/5n)?

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello The Royal Primate,

We are given to determine whether the followin series converges:

$$S=\sum_{n=1}^{\infty}\frac{n^3+n^2}{5n^4+3}$$

If we observe that for all natural numbers $n$, we have:

$$5n^3>3$$

Now add $5n^4$ to the both sides:

$$5n^4+5n^3>5n^4+3$$

Factor the left side:

$$5n\left(n^3+n^2\right)>5n^4+3$$

Divide through by $$5n\left(5n^4+3\right)>0$$:

$$\frac{n^3+n^2}{5n^4+3}>\frac{1}{5n}$$

Now, since we know the series:

$$\sum_{n=1}^{\infty}\frac{1}{5n}=\frac{1}{5}\sum_{n=1}^{\infty}\frac{1}{n}$$

is a divergent harmonic series, we therefore know that:

$$S=\sum_{n=1}^{\infty}\frac{n^3+n^2}{5n^4+3}$$

diverges as well since every term in the generated sequence is greater than those in the known divergent series. And so by the direct comparison test we know that $S$ diverges.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top