MHB The Significance of Row Space in a Matrix

matqkks
Messages
280
Reaction score
5
Why is row space of a matrix important?
 
Physics news on Phys.org
matqkks said:
Why is row space of a matrix important?

Hi matqkks, :)

Can you elaborate what do you mean by "important"? Do you want to connect this concept with some practical applications?

Kind Regards,
Sudharaka.
 
We know that the linear system Ax=b has a solution iff b is in the column space of matrix A. So column space needs no other motivation for students. THe only time I tend to use row space is to define rank of matrix.
Really what I am asking is 'why should students want to learn about row space?'
 
matqkks said:
We know that the linear system Ax=b has a solution iff b is in the column space of matrix A. So column space needs no other motivation for students. THe only time I tend to use row space is to define rank of matrix.
Really what I am asking is 'why should students want to learn about row space?'

Well in that sense, the row space is important in establishing the rank of a matrix, which in turn has useful applications(See this and http://www.mathhelpboards.com/f14/rank-1618/#post7582).

Kind Regards,
Sudharaka.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top