MHB The smallest circle that two parts of a semi-circle can fit into?

  • Thread starter Thread starter TrevorE
  • Start date Start date
  • Tags Tags
    Circle Fit parts
AI Thread Summary
The discussion revolves around finding the smallest circle that can contain two parts of a semi-circle after cutting. The poster describes a scenario involving a large circular tortilla, which leads to a contemplation of mathematical solutions for cutting the semi-circle. Three potential optimal solutions are proposed: one where the cut is a radius from the center to the edge, another allowing any cut through the semi-circle, and a third where the cut does not have to be straight. The conversation suggests a practical approach to avoid waste by cutting in a way that minimizes the leftover portion. Mathematical demonstrations or solutions to these cutting scenarios are requested.
TrevorE
Messages
1
Reaction score
0
So, true story:

I made a large circular tortilla.

Ate half of it. Then decided to put the rest into the fridge on a smaller plate.I raised the knife to cut the remaining semi-circle in two, and then went : "Hmmmmmmmm...".

Anyway, it's in the fridge now with an approximate solution, but I'm wondering if anyone knows the mathematical one?

I'm wondering if there are 3 different optimal solutions:

1) In which the straight-line cut necessarily is from the center of the original circle to the edge. I.e. a radius.
2) In which the straight-line cut may divide the semi-circle in any possible way.
3) In which the cut is not necessarily a straight line.

Thanks in advance if anyone can offer a demonstration.View attachment 9517
 

Attachments

  • Capture.JPG
    Capture.JPG
    33.8 KB · Views: 122
Last edited:
Mathematics news on Phys.org
Next time, don't cut it that way. Instead, draw a circle on your pizza with radius $\frac r {\sqrt 2}$ and eat the annulus for your first half. You will be left with the smallest possible plate size.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top