The Telephone Numbering Plan in North America: Counting Possible Numbers

  • Context: MHB 
  • Thread starter Thread starter bunyonb
  • Start date Start date
  • Tags Tags
    Counting problem Plan
Click For Summary

Discussion Overview

The discussion revolves around the North American Telephone Numbering Plan (NANP), specifically focusing on the calculation of possible telephone numbers under the old and new numbering formats. Participants explore the application of the product rule in combinatorial mathematics to derive the total number of valid telephone numbers based on specified formats.

Discussion Character

  • Mathematical reasoning
  • Technical explanation

Main Points Raised

  • One participant outlines the structure of the NANP, detailing the formats of area codes, office codes, and station codes under both the old and new plans.
  • Another participant confirms the application of the product rule in calculating the number of area codes, office codes, and station codes for both plans, providing specific calculations for each.
  • Multiple participants express agreement on the calculations presented, with one participant checking the math and confirming the results for both the old and new plans.
  • There is a discussion about the formatting of mathematical expressions, with participants providing guidance on how to properly render LaTeX code in the forum.

Areas of Agreement / Disagreement

Participants generally agree on the application of the product rule and the resulting calculations for the number of possible telephone numbers under both plans. There is no indication of disagreement regarding the mathematical approach or results.

Contextual Notes

The discussion includes technical details about the formatting of telephone numbers and the specific rules governing the digits used in the NANP. There may be assumptions regarding the understanding of combinatorial principles that are not explicitly stated.

bunyonb
Messages
7
Reaction score
0
The Telephone Numbering Plan The North American numbering plan (NANP) specifies the format of telephone numbers in the U.S., Canada, and many other parts of North America. A telephone number in this plan consists of 10 digits, which are split into a three-digit area code, a three-digit office code, and a four-digit station code. Because of signaling considerations, there are certain restrictions on some of these digits. To specify the allowable format, let X denote a digit that can take any of the values 0 through 9, let N denote a digit that can take any of the values 2 through 9, and let Y denote a digit that must be a 0 or a 1. Two numbering plans, which will be called the old plan, and the new plan, will be discussed. (The old plan, in use in the 1960s, has been replaced by the new plan, but the recent rapid growth in demand for new numbers for mobile phones and devices will eventually make even this new plan obsolete. In this example, the letters used to represent digits follow the conventions of the North American Numbering Plan.) As will be shown, the new plan allows the use of more numbers. In the old plan, the formats of the area code, office code, and station code are NYX, NNX, and XXXX, respectively, so that telephone numbers had the form NYX-NNX-XXXX. In the new plan, the formats of these codes are NXX, NXX, and XXXX, respectively, so that telephone numbers have the form
NXX-NXX-XXXX.

How many different North American telephone numbers are possible under the old plan and under the new plan?

MY ATTEMPT at answering this question:


It is said that there are two ways to count the product rule and the sum rule.

The product rule says that procedure can be broken down into a sequence of two
tasks. If there are {n}^{1} ways to do the first task, and for each of these ways of doing the first task, there are {n}^{2} ways to do the second task, then there are {n}^{1}{n}^{2} ways to do the procedure.

Thus, by the product rule there are 8*2*10=160 area codes with format NYX and 8*10*10=800 area codes with format NXX. Similarly, by the product rule, there are 8*8*10=640 office codes with format NNX. The product rule also shows that there are 10*10*10*10. = 10,000 station codes with format XXXX. Consequently, applying the product rule again, it follows that under the old plan there are 160*640*10,000=1,024,000,000. Different numbers available in North America. Under the new plan, there are 800*800*10,000=6,400,000,000 different numbers available. Am I on the right track?
 
Physics news on Phys.org
Your application of the product rule is correct, and so just to check your math:

Old plan:

$$N_O=2\cdot8^3\cdot10^6=1,024,000,000\quad\checkmark$$

New plan:

$$N_N=8^2\cdot10^8=6,400,000,000\quad\checkmark$$
 
MarkFL said:
Your application of the product rule is correct, and so just to check your math:

Old plan:

$$N_O=2\cdot8^3\cdot10^6=1,024,000,000\quad\checkmark$$

New plan:

$$N_N=8^2\cdot10^8=6,400,000,000\quad\checkmark$$

Thank you. For some reason the Latex format doesn't render for me.
 
bunyonb said:
Thank you. For some reason the Latex format doesn't render for me.

You have to wrap your code in tags, the easiest of which to use are the $$$$ tags, which can be generated by using the $\displaystyle \sum$ button on the toolbar. :)
 
MarkFL said:
You have to wrap your code in tags, the easiest of which to use are the $$$$ tags, which can be generated by using the $\displaystyle \sum$ button on the toolbar. :)

Ah ok thank you for this information.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 67 ·
3
Replies
67
Views
16K
Replies
10
Views
5K
Replies
29
Views
5K
  • · Replies 21 ·
Replies
21
Views
6K
  • · Replies 33 ·
2
Replies
33
Views
6K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 29 ·
Replies
29
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K