A. Neumaier said:
No; it is not an alternative but both! It refers to the (partially observable) beables, which are the q-expectations. This determinism is equivalent to the determinism of the density operator.
No, because the meaning assigned to ''observable'' and ''state'' is completely different.
For you, observed are only eigenvalues; for the thermal interpretation, eigenvalues are almost never observed. As in classical physics!
For you, the state of the universe makes no sense at all; for the thermal interpretation, the state of the universe is all there is (on the conceptual level), and every other system considered by physicists is a subsystem of it, with a state completely determined by the state of the universe. As in classical physics!
For you, quantum probability is something irreducible and unavoidable in the foundations; for the thermal interpretation, probability is not part of the foundations but an emergent phenomenon. As in classical physics!How can you think that both interpretations are equivalent?
Well, we obviously have very different views on the fundamental meaning of QT, and that leads to mutual misunderstandings.
If there were really only the very coarse grained FAPP deterministic macroscopic values were observables (or "beables" to use this confusing funny language), QT never would have been discovered. In fact we can observe more detailed things for small systems, and these details are even very important to make the observed fact of the atomistic structure of matter consistent with classical physics, particularly the everyday experience of the stability of matter.
You are of course right that neither the state nor the observable operators for themselves are deterministic in standard QT but only the expectation values (of which the probabilities or probability distributions are special cases) are "beables", i.e., they are the picture and representation independent observables predictions of the theory.
It is also of course true that for macroscopic systems the possible resolution of real-world measurement devices is well too coarse to measure the "eigenvalues", i.e., the microcopic details of ##\mathcal{O}(10^{23})## microscopic degrees of freedom.
What I think is still not clarified is the operational meaning of what you call q-expectations. For me they have no different meaning in either the standard minimal interpretation and you thermal interpretation, because they are the same in the formal math (##\Tr \hat{A} \hat{\rho}##, and obeying the same EoS) and also the same operationally, namely just what they are called, i.e., expectation values.
Of course, "the state of the entire universe" is a fiction in any physics. It's principally unobservable and thus subject of metaphysical speculation in QT as well as classical physics.
Only the things they try to connect - the formal theory and the experimental record are the same, but how they mediate between them is completely different (see post
#99).
So in fact they ARE the same.
The language associated with the math - that's the interpretation!
One can associate with it Copenhagen language or minimal statistical language - which is what tradition did, resulting in nearly a century of perceived weirdness of quantum mechanics by almost everyone - especially
- by all newcomers without exception and
- by some of the greatest physicists (see the quotes at the beginning of Section 5 of Part III).
Or one can associate thermal, nonstatistical language with it, restoring continuity and common sense.
Everyone is free to pick their preferred interpretation. It is time to change preferences!
For me it's very hard to follow any interpretation which forbids me to understand "thermal language" that is "not statistical". I've already a very hard time with traditional axiomatized "phenomenological thermodynamics", where, e.g., the central notion of entropy is its definition by introducing temperature as an integrating factor of an abstract Pfaffian form. The great achievement by the Berrnoulli's, Maxwell, and mostly Boltzmann were to connect these notions with the underlying fundamental deynamical laws of their time in terms of statistical physics, and that very general foundation so far withstood all the "revolutions" of 20-century physics, i.e., relativity (which anyway is just a refined classical theory for the description of space and time and thus not as revolutionary as it appeared at the turn to the 20th century) and QT (which indeed in some sense can be considered as really revolutionary in breaking with the deterministic world view).
The "apparent weirdness" of QT is for me completely resolved by the minimal statistical interpretation. It's not QT is weird but our prejudice that our "common sense", trained by everyday experience with rough macroscopic observables (or preceptions if you wish), tells us the full structure of matter.
In my opinion we should stop talking about QT as "something weird nobody understands" and rather state that it's the most detailed theory we have so far. The real problems are not in these metaphysical quibbles of the last millenium but in the open unsolved questions of contemporary physics, which are
-a consistent quantum description of the gravitational interaction; does it imply "quantization of spacetime" as suggested by the close connection between the mathematical description of gravity as a geometrical feature of the space-time manifold (as a pseudo-Riemannian/Lorentzian manifold as in GR or rather the more natural extension to an Einstein-Cartan manifold, gauging the Lorentz group), or is there something completely new ("revolutionary") needed? I think the answers to these questions are completely open at the moment, and despite many mathematically fascinating ideas (string and M-theory, loop quantum gravity,...) I fear we'll have a very hard time without any empirical glimpse into what might be observational features of whatever "quantum effect on gravitation and/or the space-time structure".
-the nature of what's dubbed "Dark Energy" and "Dark Matter", which may be related to the question of quantum gravity too. Also here, I think it's hard to think of any progress without some empirical guidance of what the "physics of the standard model" may be.