The vector math of relative motion of wire-loop & bar magnet

Click For Summary
SUMMARY

The discussion centers on the vector math of relative motion between a wire-loop and a bar magnet, specifically addressing how the magnetic field components affect electrical fields in the wire-loop. It establishes that the force on charges within the wire-loop arises from the lateral component of the magnetic field, not the component aligned with the direction of motion. This distinction is crucial, as the cross-product of parallel vectors results in zero force, clarifying common misconceptions regarding magnetic flux and electrical fields. The analysis confirms the accuracy of the understanding presented in the discussion.

PREREQUISITES
  • Understanding of Faraday's Law of Electromagnetic Induction
  • Familiarity with vector mathematics and cross-products
  • Knowledge of magnetic field components and their effects
  • Basic principles of electromagnetism
NEXT STEPS
  • Study the implications of Faraday's Law in different electromagnetic scenarios
  • Learn about the right-hand rule and its applications in electromagnetism
  • Explore the concept of magnetic flux and its calculation in various geometries
  • Investigate the behavior of electric fields in conductive materials under varying magnetic fields
USEFUL FOR

Physics students, electrical engineers, educators in electromagnetism, and anyone interested in the principles of electromagnetic induction and vector mathematics.

swampwiz
Messages
567
Reaction score
83
I was watching this video about how the problem of a wire-loop moving relative to a bar magnet:



The case of presuming that the wire-loop is fixed seems to be that the magnetic flux (along the surface normal to the direction of the centerline - call it C) through the wire-loop is changing in time, thus causing there to be a net electrical field along the wire-loop, as per Faraday's law (or Maxwell's 3rd law). However, the case of presuming that the bar magnet is fixed seems to be that it is not the component of the magnetic field in the direction of the motion, but rather the component of the magnetic field in the direction going laterally away from the centerline of the magnet (call it R), such that charges of both sign-types are moving with a velocity in C, thus imparting a force (let's presume that the right-hand rule is C x R = T ) that is in the T direction, but in the direction as per the sign-type of charge, thus generating an electrical field along the wire; I would presume that the positive charges, the nuclei, resist the force, and that this is imparted back to the magnet (it would cancel out since it would be from a loop), but the negative charges, the electrons, get pushed through the wire loop, which is equivalent to there being an electric field in the wire.

I think the lecturer was not careful in explaining that it is the component of the magnetic field in the lateral direction, and someone who is used to thinking about magnetic flux through a wire-loop as the component in the centerline direction could very well think that it is this component causing the force - but that cannot be since the motion of the wire-loop itself is in the centerline direction, and since the cross-product of parallel vectors is 0, the force on the charges would be 0.

Is this accurate?
 
Physics news on Phys.org


Yes, your understanding of the vector math of relative motion between a wire-loop and a bar magnet is accurate. The key concept to understand is that the force on the charges in the wire-loop is not caused by the component of the magnetic field in the direction of motion, but rather by the component of the magnetic field in the lateral direction. This is because the motion of the wire-loop is perpendicular to the direction of the magnetic field, so the cross-product of these vectors is not zero, resulting in a non-zero force on the charges. It is important to clarify this point, as it may be confusing for someone who is used to thinking about magnetic flux through a wire-loop in terms of the component in the centerline direction. Overall, your analysis of the relative motion between the wire-loop and bar magnet is correct.
 

Similar threads

  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
675
  • · Replies 61 ·
3
Replies
61
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K