The wave function of hydrogen

Click For Summary
The discussion focuses on the angular portion of the hydrogen wave function, specifically for the 3d state with quantum numbers n=3, l=2, and m values ranging from -2 to +2. Participants clarify that the Cartesian subscripts in wave functions indicate nodal planes, with examples like the p_z function demonstrating this relationship. The d functions are more complex and often require linear combinations of complex functions to yield real, plottable forms. The assignment of m values to specific functions, such as p_x corresponding to m=+1 or m=-1, is largely a matter of convention in quantum chemistry. Overall, the conversation emphasizes the geometric interpretation of wave functions and the conventions used in quantum mechanics.
einstein1921
Messages
76
Reaction score
0
HI,everyone.I have a problem. the angular portion of wavefunction of hydrogen,like 3d.
n=3,l=2,so m=2,1,0,-1,-2.I read some books that say dxy,dxz,dyz,dz2,dx2-y2,so what the
corresponding Relation between them. for example,dz2 corresponding what ?m=0?? and why?
any help will be highly appreciated!
 
Physics news on Phys.org
You are correct. The cartesian coordinates subscripts usually indicate nodal planes. For example, the p_z function (l=1, m=0)can be written as:

<br /> <br /> \psi = \frac{1}{\sqrt{32 \pi}} \left( \frac{Z}{a_0} \right)^{5/2} z e^{\frac{-Zr}{2 a_0}}<br /> <br />

Where cartesian and polar coordinates are mixed together. However, when written in this form, it is easy to see that whenever z=0 then psi also = 0, which means that the xy plane is a nodal plane.

As for d functions, it becomes more complicated. I think that some of them will be complex functions, and you'll need to take linear combinations of them in order to get real functions that you can plot. The d_(x^2-y^2) function is a linear combination of the complex m=+2 and m=-2 functions. This will yield:

<br /> \psi = \frac{1}{81\sqrt{ 2\pi}} \left( \frac{Z}{a_0} \right)^{7/2} e^{\frac{-Zr}{3 a_0}} (x^2 - y^2)

So, in a way, this notation with the cartesian coordinates describes the geometry of the wavefunction.
 
Amok said:
You are correct. The cartesian coordinates subscripts usually indicate nodal planes. For example, the p_z function (l=1, m=0)can be written as:

<br /> <br /> \psi = \frac{1}{\sqrt{32 \pi}} \left( \frac{Z}{a_0} \right)^{5/2} z e^{\frac{-Zr}{2 a_0}}<br /> <br />

Where cartesian and polar coordinates are mixed together. However, when written in this form, it is easy to see that whenever z=0 then psi also = 0, which means that the xy plane is a nodal plane.

As for d functions, it becomes more complicated. I think that some of them will be complex functions, and you'll need to take linear combinations of them in order to get real functions that you can plot. The d_(x^2-y^2) function is a linear combination of the complex m=+2 and m=-2 functions. This will yield:

<br /> \psi = \frac{1}{81\sqrt{ 2\pi}} \left( \frac{Z}{a_0} \right)^{7/2} e^{\frac{-Zr}{3 a_0}} (x^2 - y^2)

So, in a way, this notation with the cartesian coordinates describes the geometry of the wavefunction.

Thank you,Amok.your answer is very helpful to me.would you please tell me that p_x corresponds to m=1 or m=-1 and why?
again thanks.
 
einstein1921 said:
Thank you,Amok.your answer is very helpful to me.would you please tell me that p_x corresponds to m=1 or m=-1 and why?
again thanks.
It is more of a convention thing than anything; there are no strict relationships between the two. You can define whatever.

That being said, the most common convention in quantum chemistry has the real solid harmonics beeing approximated like this in terms of cartesians:

AngMom L = 0
S(0,m=+0) = + 1.00000
AngMom L = 1
S(1,m=-1) = + 1.00000 y
S(1,m=+0) = + 1.00000 z
S(1,m=+1) = + 1.00000 x
AngMom L = 2
S(2,m=-2) = + 1.73205 x y
S(2,m=-1) = + 1.73205 y z
S(2,m=+0) = + 1.00000 z^2 - 0.50000 y^2 - 0.50000 x^2
S(2,m=+1) = + 1.73205 x z
S(2,m=+2) = - 0.86603 y^2 + 0.86603 x^2
AngMom L = 3
S(3,m=-3) = - 0.79057 y^3 + 2.37171 x^2 y
S(3,m=-2) = + 3.87298 x y z
S(3,m=-1) = + 2.44949 y z^2 - 0.61237 y^3 - 0.61237 x^2 y
S(3,m=+0) = + 1.00000 z^3 - 1.50000 y^2 z - 1.50000 x^2 z
S(3,m=+1) = + 2.44949 x z^2 - 0.61237 x y^2 - 0.61237 x^3
S(3,m=+2) = - 1.93649 y^2 z + 1.93649 x^2 z
S(3,m=+3) = - 2.37171 x y^2 + 0.79057 x^3

This is what you will usually get when using "spherical" basis functions in a chemical electronic structure program, and correspondingly also what most plots and chemistry books refer to.
 
Exact same thing as p_z, except you the nodal plane will be yz, instead of xy. The fact that it is assigned to m=+1 is just a convention. Check this out:

http://en.wikipedia.org/wiki/Atomic_orbital#Orbitals_table

Also, if you want more details, check out QM textbooks. I use the Cohen-Tanoudji (because I'm a French speaker, but is also available in English). What you are asking about is explained in chapter VII, complement E (in some detail, but they give references as well). I think that if you look into good quantum chemistry books, you're bound to find explanations about this, since chemists use these concepts in order to explain chemical phenomena on a daily basis.
 
Time reversal invariant Hamiltonians must satisfy ##[H,\Theta]=0## where ##\Theta## is time reversal operator. However, in some texts (for example see Many-body Quantum Theory in Condensed Matter Physics an introduction, HENRIK BRUUS and KARSTEN FLENSBERG, Corrected version: 14 January 2016, section 7.1.4) the time reversal invariant condition is introduced as ##H=H^*##. How these two conditions are identical?

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 61 ·
3
Replies
61
Views
5K