MHB Therefore, the roots of the given equation are $x=-4$ and $x=2$.

led
Messages
1
Reaction score
0
Solve (x+3)^2 = 4x+17 where did i go wrong?
(x+3)(x+3 )= 4x+17

x^2 + 3x + 3x + 9 = 4x+17

x^2 + 6x + 9 = 4x + 17

x^2 + 6x + 9 - 4x - 17 = 0

x^2 + 2x - 8 = 0

(x-2)(x+4) <-- USING THE CROSS METHOD View attachment 3985

x= -2, 4 is my cross method working incorrect or something? do explain my mistake
 

Attachments

  • math.png
    math.png
    7.3 KB · Views: 90
Mathematics news on Phys.org
led said:
where did i go wrong?
In the very last line. Well, second last line.
 
You have factored correctly, but your roots have the wrong signs.

Another method to solve this equation would be to write it as:

$$(x+3)^2-4x-17=0$$

$$(x+3)^2-4(x+3)-5=0$$

Now factor the quadratic in $x+3$:

$$\left((x+3)+1\right)\left((x+3)-5\right)=0$$

Combine like terms:

$$(x+4)(x-2)=0$$

Now, to find the actual roots, use the zero-factor property, and equate each factor to zero in turn and solve for $x$:

$$x+4=0\implies x=-4$$

$$x-2=0\implies x=2$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
7
Views
1K
Replies
10
Views
2K
Replies
4
Views
1K
Replies
8
Views
1K
Replies
6
Views
2K
Replies
2
Views
1K
Back
Top