1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Thinking of dropping my math major

  1. Mar 14, 2014 #1
    Okay, I need some opinions here.

    I'm a physics major (computational) at a state university, currently a sophomore. I'm also double majoring in math, but due to course conflicts, I am considering dropping it. If I drop it, I can graduate in one more year. I plan to go to graduate school. My current GPA is a 4.0, and I am doing physics research so I think that my prospects are rather good.

    How useful is a math degree in making admissions decisions for graduate school?
  2. jcsd
  3. Mar 15, 2014 #2
    I'm fairly certain this entirely depends upon whether or not you intend to go to math graduate school.
  4. Mar 15, 2014 #3
    I would drop it if I were you.
  5. Mar 15, 2014 #4
    If you want to be a theoretical physicist, I'd advise taking those math classes.
  6. Mar 15, 2014 #5


    User Avatar
    Gold Member

    ^ Not necessary. I don't know what the classes are, but if you miss out on them and end up needing them later, just take them in grad school.
  7. Mar 15, 2014 #6
    I do plan on going to graduate school, but not for math. I also plan on taking upper-level discrete math courses because I find them interesting, but I will probably take them pass/fail. I will be picking up a second physics major.
  8. Mar 15, 2014 #7


    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    I'm not sure what you mean by a "second" physics major - can you explain, please?

    And do you plan on going to grad school for physics (you didn't explicitly say)?
  9. Mar 16, 2014 #8
    Ah, yes, my apologies. I do plan on going for physics - theoretical or computational, not experimental, if it matters.

    At my school, there are four "sequences" for physics - computational, straight physics, education, and engineering. They are technically defined as different majors. I am currently computational, but I would also be majoring in straight physics. The only classes that overlap are physics I, II, and III, mechanics, E&M, and math methods I. I'll be seeing A LOT more physics than I otherwise would. Not to go into too gory detail, but right now, the classes I'd be taking are

    • computational methods
    • advanced computational physics
    • computational research in physics
    • quantum mechanics II
    • experimental physics
    • nonlinear dynamics
    • abstract algebra
    • advanced abstract algebra
    • real analysis
    • graph theory
    • probability

    In contrast, by dropping my math major and adding in a second physics major, I'd be seeing

    • computational methods
    • advanced computational physics
    • computational research in physics
    • quantum mechanics II
    • nonlinear dynamics
    • experimental physics
    • mechanics II
    • E&M II
    • electronics
    • math methods II
    • optics

    The second list looks much more favorable to an admissions committee, in my opinion. Would you agree? In addition, I would still be taking upper-level math courses (Diff Eq II, advanced topics in discrete) as available. Since I will not be seeking a math degree, I can take these pass/fail. As a last resort, if I am unable to get into a graduate school in two years, I can stay an extra year and get my math degree.

    Plus, honestly, I might go crazy if I have to sit through math classes that are unrelated to anything I might ever have to do. I do love math, but some of the upper level classes would drive me batty.
  10. Mar 16, 2014 #9
    I think the second list is better, but still learn some abstract algebra anyway.
  11. Mar 16, 2014 #10
    Why do you say that?
  12. Mar 16, 2014 #11
    Abstract algebra will be virtually useless to the OP. The only useful thing might be group theory. But what physicists need there is representations of Lie groups, something an abstract algebra class will not focus on too much. So there are way better classes to take than abstract algebra.
  13. Mar 16, 2014 #12
    There are a lot of ideas in theoretical physics for which understanding abstract math such a group theory are important. In my first semester quantum grad class we got to the discussion of angular momentum and the professor just started tossing out terms like "symmetry," "representation," and "lie algebra" and most people didn't know what he was talking about (except the people that had had algebra).

    So we ended up doing a group theory review section and it was really not enough to deeply understand the subject so most people either struggled through the PSet, or resolved to power through the subject to gain a better understanding.

    But if you already know what a group is, you won't be fazed at all. There are other topics in abstract algebra that contribute to understanding physics such as vector spaces, inner product spaces, etc. (with the aim of studying Hilbert Space) and you can't really get lie groups and algebras without first knowing what a group and an algebra is.

    He did say he wants to be a theorist.

    EDIT: Two other points I thought of is firstly, it is good to have seen some proof based course as it helps with just guiding mathematical thinking at a higher level and second that abstract math goes beyond just entry quantum into more advanced subjects thinking about things like topological insulators, the standard model, and the infamous string theory.
    Last edited: Mar 16, 2014
  14. Mar 16, 2014 #13
    You talk about topics like "symmetry", "representation", "lie algebra", "hilbert space",... Neither of which is taught in a first abstract algebra course (except perhaps symmetry). A first abstract algebra course focuses on finite groups, a topic generally useless for physicists. I think it is far better to self-study the necessary concepts, I doubt it will take longer than a few days to do so. For example, take a look at the appendix of Halls book "Lie Groups, Lie Algebras, and Representations". This appendix is everything of group theory you'll need to know for physics and it's only a few pages long.
  15. Mar 16, 2014 #14
    I agree OP could self study, I did. But I'll still argue that knowing about finite groups and vector spaces is not "useless" because it gives you intuition for thinking about finite groups and vector spaces and a lot of things that are proved for finite groups and also true for infinite groups and I think the topic deserves more attention than a couple pages. There are even mathematical physics books that devote significant amounts of time to the subjects.
  16. Mar 16, 2014 #15
    These aren't things that would be covered in math methods I or II?
  17. Mar 16, 2014 #16

    D H

    User Avatar
    Staff Emeritus
    Science Advisor

    Vector spaces? To some extent, almost certainly. Finite groups? Probably not.

    I suspect it's going to be more along the lines of matrices and linear systems, complex analysis, Fourier analysis, calculus of variations, integral equations. Those undergrad mathematical methods classes aimed primarily at physics majors tend to be a whirlwind tour through a number of different applied mathematics topics. Just when you feel you are finally starting to get on subject, it's on to another.

    What are the syllabi for those classes?
  18. Mar 16, 2014 #17
    No syllabi for those classes. I'm in math methods I right now, and halfway through the semester we are just beginning to "learn" how to integrate, so I'm thinking that math methods I and II at my university are not as intense as they should be.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook