MHB Throwing a Ball Up: Motion & Time to Max Height

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Ball
AI Thread Summary
An object thrown vertically upward with an initial speed $v_0$ experiences motion described by the equations of velocity and position, factoring in gravitational and drag forces. The velocity over time is given by $v_y(t) = v_0e^{-t/\tau} - v_{\text{ter}}(1 - e^{-t/\tau})$, where $v_{\text{ter}}$ is the terminal velocity. The position function is derived from integrating the velocity, resulting in $y(t) = -tv_{\text{ter}} + \tau(v_{\text{ter}} + v_0)(1 - e^{-t/\tau})$. The maximum height is reached at time $t = \tau\ln\left(1 + \frac{v_0}{v_{\text{ter}}}\right)$. This analysis effectively combines the effects of initial velocity and drag in vertical motion.
Dustinsfl
Messages
2,217
Reaction score
5
Consider an object that is thrown vertically up with initial speed $v_0$ in a linear medium.
Measuring $y$ upward from the point of release, write expressions for the object's velocity $v_y(t)$ and position $y(t)$.
The equation of motion is
\begin{alignat*}{3}
m\dot{v}_y & = & -mg - bv_y\\
& = & -b\left(\frac{mg}{b} + v_y\right)\\
\dot{v}_y & = & -\frac{b}{m}\left(v_{\text{ter}} + v_y\right)\\
& = & -\frac{1}{\tau}\left(v_{\text{ter}} + v_y\right)\\
\int_{v_0}^{v_y}\frac{dv_y'}{v_{\text{ter}} + v_y'} & = & -\frac{1}{\tau}\int_0^t dt'\\
\ln\left(\frac{v_{\text{ter}} + v_y}{v_{\text{ter}} + v_0}\right) & = & -\frac{t}{\tau}\\
v_y(t) & = & (v_{\text{ter}} + v_0)e^{-t/\tau} - v_{\text{ter}}\\
& = & v_0e^{-t/\tau} - v_{\text{ter}}(1 - e^{-t/\tau})
\end{alignat*}
Next, we need to solve for $y(t)$ where $\dot{y}(t) = v_y(t)$.
\begin{alignat*}{3}
\dot{y}(t) & = & v_0e^{-t/\tau} - v_{\text{ter}}(1 - e^{-t/\tau})\\
\int_{y_0 = 0}^ydy' & = & \int_0^t(v_{\text{ter}} + v_0)e^{-t'/\tau}dt' - \int_0^tv_{\text{ter}} dt'\\
y(t) & = & -tv_{\text{ter}} + \tau(v_{\text{ter}} + v_0)(1 - e^{-t/\tau})\\
\end{alignat*}
The time it reaches $y_{\max}$ is $t = \tau\ln\left(1 + \frac{v_0}{v_{\text{ter}}}\right)$ correct?
 
Last edited:
Mathematics news on Phys.org
Correct.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top