MHB Throwing a Ball Up: Motion & Time to Max Height

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Ball
Click For Summary
An object thrown vertically upward with an initial speed $v_0$ experiences motion described by the equations of velocity and position, factoring in gravitational and drag forces. The velocity over time is given by $v_y(t) = v_0e^{-t/\tau} - v_{\text{ter}}(1 - e^{-t/\tau})$, where $v_{\text{ter}}$ is the terminal velocity. The position function is derived from integrating the velocity, resulting in $y(t) = -tv_{\text{ter}} + \tau(v_{\text{ter}} + v_0)(1 - e^{-t/\tau})$. The maximum height is reached at time $t = \tau\ln\left(1 + \frac{v_0}{v_{\text{ter}}}\right)$. This analysis effectively combines the effects of initial velocity and drag in vertical motion.
Dustinsfl
Messages
2,217
Reaction score
5
Consider an object that is thrown vertically up with initial speed $v_0$ in a linear medium.
Measuring $y$ upward from the point of release, write expressions for the object's velocity $v_y(t)$ and position $y(t)$.
The equation of motion is
\begin{alignat*}{3}
m\dot{v}_y & = & -mg - bv_y\\
& = & -b\left(\frac{mg}{b} + v_y\right)\\
\dot{v}_y & = & -\frac{b}{m}\left(v_{\text{ter}} + v_y\right)\\
& = & -\frac{1}{\tau}\left(v_{\text{ter}} + v_y\right)\\
\int_{v_0}^{v_y}\frac{dv_y'}{v_{\text{ter}} + v_y'} & = & -\frac{1}{\tau}\int_0^t dt'\\
\ln\left(\frac{v_{\text{ter}} + v_y}{v_{\text{ter}} + v_0}\right) & = & -\frac{t}{\tau}\\
v_y(t) & = & (v_{\text{ter}} + v_0)e^{-t/\tau} - v_{\text{ter}}\\
& = & v_0e^{-t/\tau} - v_{\text{ter}}(1 - e^{-t/\tau})
\end{alignat*}
Next, we need to solve for $y(t)$ where $\dot{y}(t) = v_y(t)$.
\begin{alignat*}{3}
\dot{y}(t) & = & v_0e^{-t/\tau} - v_{\text{ter}}(1 - e^{-t/\tau})\\
\int_{y_0 = 0}^ydy' & = & \int_0^t(v_{\text{ter}} + v_0)e^{-t'/\tau}dt' - \int_0^tv_{\text{ter}} dt'\\
y(t) & = & -tv_{\text{ter}} + \tau(v_{\text{ter}} + v_0)(1 - e^{-t/\tau})\\
\end{alignat*}
The time it reaches $y_{\max}$ is $t = \tau\ln\left(1 + \frac{v_0}{v_{\text{ter}}}\right)$ correct?
 
Last edited:
Mathematics news on Phys.org
Correct.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
2
Views
2K
Replies
62
Views
7K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K