MHB Throwing a Ball Up: Motion & Time to Max Height

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Ball
AI Thread Summary
An object thrown vertically upward with an initial speed $v_0$ experiences motion described by the equations of velocity and position, factoring in gravitational and drag forces. The velocity over time is given by $v_y(t) = v_0e^{-t/\tau} - v_{\text{ter}}(1 - e^{-t/\tau})$, where $v_{\text{ter}}$ is the terminal velocity. The position function is derived from integrating the velocity, resulting in $y(t) = -tv_{\text{ter}} + \tau(v_{\text{ter}} + v_0)(1 - e^{-t/\tau})$. The maximum height is reached at time $t = \tau\ln\left(1 + \frac{v_0}{v_{\text{ter}}}\right)$. This analysis effectively combines the effects of initial velocity and drag in vertical motion.
Dustinsfl
Messages
2,217
Reaction score
5
Consider an object that is thrown vertically up with initial speed $v_0$ in a linear medium.
Measuring $y$ upward from the point of release, write expressions for the object's velocity $v_y(t)$ and position $y(t)$.
The equation of motion is
\begin{alignat*}{3}
m\dot{v}_y & = & -mg - bv_y\\
& = & -b\left(\frac{mg}{b} + v_y\right)\\
\dot{v}_y & = & -\frac{b}{m}\left(v_{\text{ter}} + v_y\right)\\
& = & -\frac{1}{\tau}\left(v_{\text{ter}} + v_y\right)\\
\int_{v_0}^{v_y}\frac{dv_y'}{v_{\text{ter}} + v_y'} & = & -\frac{1}{\tau}\int_0^t dt'\\
\ln\left(\frac{v_{\text{ter}} + v_y}{v_{\text{ter}} + v_0}\right) & = & -\frac{t}{\tau}\\
v_y(t) & = & (v_{\text{ter}} + v_0)e^{-t/\tau} - v_{\text{ter}}\\
& = & v_0e^{-t/\tau} - v_{\text{ter}}(1 - e^{-t/\tau})
\end{alignat*}
Next, we need to solve for $y(t)$ where $\dot{y}(t) = v_y(t)$.
\begin{alignat*}{3}
\dot{y}(t) & = & v_0e^{-t/\tau} - v_{\text{ter}}(1 - e^{-t/\tau})\\
\int_{y_0 = 0}^ydy' & = & \int_0^t(v_{\text{ter}} + v_0)e^{-t'/\tau}dt' - \int_0^tv_{\text{ter}} dt'\\
y(t) & = & -tv_{\text{ter}} + \tau(v_{\text{ter}} + v_0)(1 - e^{-t/\tau})\\
\end{alignat*}
The time it reaches $y_{\max}$ is $t = \tau\ln\left(1 + \frac{v_0}{v_{\text{ter}}}\right)$ correct?
 
Last edited:
Mathematics news on Phys.org
Correct.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top