Throwing a Ball Up: Motion & Time to Max Height

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Ball
Click For Summary
SUMMARY

The discussion focuses on the motion of an object thrown vertically upward with an initial speed $v_0$ in a linear medium, detailing the equations for velocity $v_y(t)$ and position $y(t)$. The derived expressions include $v_y(t) = (v_{\text{ter}} + v_0)e^{-t/\tau} - v_{\text{ter}}$ and $y(t) = -tv_{\text{ter}} + \tau(v_{\text{ter}} + v_0)(1 - e^{-t/\tau})$. The time to reach maximum height is confirmed as $t = \tau\ln\left(1 + \frac{v_0}{v_{\text{ter}}}\right)$. These equations incorporate parameters such as terminal velocity $v_{\text{ter}}$ and time constant $\tau$.

PREREQUISITES
  • Understanding of Newton's laws of motion
  • Familiarity with differential equations
  • Knowledge of exponential functions and logarithms
  • Concept of terminal velocity in physics
NEXT STEPS
  • Study the derivation of motion equations in non-linear mediums
  • Explore the effects of varying initial speeds on maximum height
  • Learn about the impact of drag forces on projectile motion
  • Investigate real-world applications of motion equations in sports physics
USEFUL FOR

Physics students, educators, and anyone interested in understanding the dynamics of projectile motion and the effects of air resistance on vertical trajectories.

Dustinsfl
Messages
2,217
Reaction score
5
Consider an object that is thrown vertically up with initial speed $v_0$ in a linear medium.
Measuring $y$ upward from the point of release, write expressions for the object's velocity $v_y(t)$ and position $y(t)$.
The equation of motion is
\begin{alignat*}{3}
m\dot{v}_y & = & -mg - bv_y\\
& = & -b\left(\frac{mg}{b} + v_y\right)\\
\dot{v}_y & = & -\frac{b}{m}\left(v_{\text{ter}} + v_y\right)\\
& = & -\frac{1}{\tau}\left(v_{\text{ter}} + v_y\right)\\
\int_{v_0}^{v_y}\frac{dv_y'}{v_{\text{ter}} + v_y'} & = & -\frac{1}{\tau}\int_0^t dt'\\
\ln\left(\frac{v_{\text{ter}} + v_y}{v_{\text{ter}} + v_0}\right) & = & -\frac{t}{\tau}\\
v_y(t) & = & (v_{\text{ter}} + v_0)e^{-t/\tau} - v_{\text{ter}}\\
& = & v_0e^{-t/\tau} - v_{\text{ter}}(1 - e^{-t/\tau})
\end{alignat*}
Next, we need to solve for $y(t)$ where $\dot{y}(t) = v_y(t)$.
\begin{alignat*}{3}
\dot{y}(t) & = & v_0e^{-t/\tau} - v_{\text{ter}}(1 - e^{-t/\tau})\\
\int_{y_0 = 0}^ydy' & = & \int_0^t(v_{\text{ter}} + v_0)e^{-t'/\tau}dt' - \int_0^tv_{\text{ter}} dt'\\
y(t) & = & -tv_{\text{ter}} + \tau(v_{\text{ter}} + v_0)(1 - e^{-t/\tau})\\
\end{alignat*}
The time it reaches $y_{\max}$ is $t = \tau\ln\left(1 + \frac{v_0}{v_{\text{ter}}}\right)$ correct?
 
Last edited:
Physics news on Phys.org
Correct.
 

Similar threads

Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
5K
Replies
2
Views
2K
Replies
62
Views
7K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K