MHB Time-Discrete Odometry: Solving Complicated Equations By Hand

  • Thread starter Thread starter RandomUserName
  • Start date Start date
RandomUserName
Messages
6
Reaction score
0
Hello, I have another question regarding my cognitive robotics class. Here is my current task:
View attachment 6205
And this is the slide from the lecture about this topic:
View attachment 6206
Now just plugging in everything I know into the formulas, I get this:
$$\boxed{3 = \sqrt{x'^{2} + y'^{2}}\\
-20 = atan2(y',x')\\
-30 = \theta' - 20}\\
\boxed{y' = \sqrt{9-x'^{2}}\\
-20 = atan2(\sqrt{9-x'^{2}},x')\\
\theta' = -10}\\
\boxed{y \approx 1.026\\
x = 3 \cos(20) \approx 2.819\\
\theta' = -10}$$

But then, when I try to perform the second motion, I get the following:
$$\boxed{10 \approx \sqrt{(x' - 2.189)^{2} + (y' - 1.026)^{2}}\\
20 \approx atan2(y' - 1.026, x' - 2.819) + 10\\
10 = \theta' + 10 - 20}$$
which is just way too complicated for me to solve (and we are supposed to solve this by hand).

Am I doing this right at all? Or is there some other formula that I should use? I haven't been able to find anything that helps me using Google :(
 

Attachments

  • 1.png
    1.png
    12.2 KB · Views: 118
  • 2.png
    2.png
    17.3 KB · Views: 111
Mathematics news on Phys.org
Re: time-discrete odometry

RandomUserName said:
Now just plugging in everything I know into the formulas, I get this:
$$\boxed{3 = \sqrt{x'^{2} + y'^{2}}\\
-20 = atan2(y',x')\\
-30 = \theta' - 20}$$

Hi again RandomUserName! (Smile)

Let's take a look at this first step.
First off, shouldn't it be $-30 = \theta' - -20 = \theta' + 20$? (Wondering)

Okay, now for an intermezzo about polar coordinates.
Suppose we have the following right triangle:
\begin{tikzpicture}[ultra thick, font=\Large, blue]
\draw[thin] (4,0) rectangle +(-0.3,+0.3);
\draw (0,0) -- node[below] {$x$} (4,0) -- node
{$y$} (4,3) -- node[above left] {$r$} cycle;
\node[above right, xshift=4mm] (0,0) {$\alpha$};
\end{tikzpicture}
Then we have:
$$r=\sqrt{x^2+y^2}\\ \alpha = \operatorname{atan2}(y,x) \\ x=r\cos\alpha \\ y=r\sin\alpha$$

Can we find $x$ and $y$ from $r$ and $\alpha$ in the problem at hand? (Wondering)​
 
Re: time-discrete odometry

I like Serena said:
Hi again RandomUserName! (Smile)

Let's take a look at this first step.
First off, shouldn't it be $-30 = \theta' - -20 = \theta' + 20$? (Wondering)
Yes, you are correct, I messed up the sign there => $$\theta' = -50°$$
I like Serena said:
Okay, now for an intermezzo about polar coordinates.
Suppose we have the following right triangle:
\begin{tikzpicture}[ultra thick, font=\Large, blue]
\draw[thin] (4,0) rectangle +(-0.3,+0.3);
\draw (0,0) -- node[below] {$x$} (4,0) -- node
{$y$} (4,3) -- node[above left] {$r$} cycle;
\node[above right, xshift=4mm] (0,0) {$\alpha$};
\end{tikzpicture}
Then we have:
$$r=\sqrt{x^2+y^2}\\ \alpha = \operatorname{atan2}(y,x) \\ x=r\cos\alpha \\ y=r\sin\alpha$$

Can we find $x$ and $y$ from $r$ and $\alpha$ in the problem at hand? (Wondering)​

Omg, the more complicated the task gets, the more simple stuff I seem to not think of :D

edit:
Ok, I figured out my mistake, was another sign error... But now I'm good. Thank you again!​
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
4
Views
1K
Replies
24
Views
2K
Replies
2
Views
2K
Replies
1
Views
7K
Replies
4
Views
2K
Replies
8
Views
1K
Replies
13
Views
2K
Back
Top