MHB Time for truck to go down ramp and reach point B

Porter Tawa
Messages
2
Reaction score
0
A 2000 kg truck is resting at the top of a parking lot ramp which is at a 15 degree slope. It is then shifted into Neutral and starts moving.
How long does it take the truck to get from A to B in seconds?

There is a 15 degree slope on the ramp.
uk is 0.08
Assume there is no air resistance.
 

Attachments

  • Truck Ramp.jpg
    Truck Ramp.jpg
    12.9 KB · Views: 99
Mathematics news on Phys.org
Homework not done here...

Have a look here:

https://www.chegg.com/homework-help/questions-and-answers/4000-kg-truck-rest-15-degree-slope-important-lengthy-problem-definitely-grading-draw-freeb-q18917900
 
Thank you for your reply.
I took a look at the link. It requires a paid membership and it does not discus the time it takes to get from point A to B.
 
Last edited:
https://mathhelpboards.com/attachments/physics-64/8920d1554183349-time-truck-go-down-ramp-reach-point-b-truck-ramp-jpg

Porter Tawa said:
A 2000 kg truck is resting at the top of a parking lot ramp which is at a 15 degree slope. It is then shifted into Neutral and starts moving.
How long does it take the truck to get from A to B in seconds?

There is a 15 degree slope on the ramp.
uk is 0.08
Assume there is no air resistance.

You have accelerated motion from A down the ramp, then constant speed from the bottom of the ramp to B.

To determine acceleration down the ramp, note Newton's 2nd law ...
$F_{net} = ma = mg\sin{\theta} - f_k$

The kinematics equation for constant acceleration down the ramp would be $\Delta x = v_0 \cdot t - \dfrac{1}{2}at^2$
You're given the displacement down the ramp and you are also told the truck starts from rest. If you have calculated the magnitude of acceleration from the force equation above, then you should be able to determine the time required from point A to the ramp bottom.

To determine the time on the horizontal surface from the ramp bottom to B, you'll need to calculate the truck's speed at the ramp bottom. There are a couple of ways to calculate that speed value from other kinematics equations for constant acceleration.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top