jeff1evesque
- 312
- 0
Statement:
<v(t)> = \frac{1}{T} \int^{T}_{0}v(t)dt = \frac{1}{T} \int^{T}_{0}V_0cos(\omega t + \phi)dt \equiv 0. (#1)Relevant Question:
If we suppose v(t) is a complex vector, is the second equality above still true?Reasoning:
If v(t) is a complex vector, then v(t) = cos(\omega t)\hat{x} + sin(\omega t)\hat{y}.
But we also know (by sum to angle identity), cos(\omega t + \theta) = cos(\omega t)cos(\theta) - sin(\omega t)sin(\theta) \Leftrightarrow V_0cos(\omega t + \theta) = V_0[cos(\omega t)cos(\theta) - sin(\omega t)sin(\theta)= V_0[cos(\omega t)cos(\theta)]
But is the following true:
V_0[cos(\omega t)cos(\theta)] = cos(\omega t)\hat{x} + sin(\omega t)\hat{y} ?
Because in the original equation (#1), if v(t) is a complex vector, I cannot see why v(t) = V_0cos(\omega t + \phi)?thanks,
Jeff
<v(t)> = \frac{1}{T} \int^{T}_{0}v(t)dt = \frac{1}{T} \int^{T}_{0}V_0cos(\omega t + \phi)dt \equiv 0. (#1)Relevant Question:
If we suppose v(t) is a complex vector, is the second equality above still true?Reasoning:
If v(t) is a complex vector, then v(t) = cos(\omega t)\hat{x} + sin(\omega t)\hat{y}.
But we also know (by sum to angle identity), cos(\omega t + \theta) = cos(\omega t)cos(\theta) - sin(\omega t)sin(\theta) \Leftrightarrow V_0cos(\omega t + \theta) = V_0[cos(\omega t)cos(\theta) - sin(\omega t)sin(\theta)= V_0[cos(\omega t)cos(\theta)]
But is the following true:
V_0[cos(\omega t)cos(\theta)] = cos(\omega t)\hat{x} + sin(\omega t)\hat{y} ?
Because in the original equation (#1), if v(t) is a complex vector, I cannot see why v(t) = V_0cos(\omega t + \phi)?thanks,
Jeff