Undergrad Time of flight measurement uncertainty

Click For Summary
SUMMARY

The discussion focuses on measuring the mean time of flight (tof) of electrons generated from a 3D Gaussian source positioned between capacitor plates, with one plate acting as a tof detector. The uncertainty in the position measurement is derived from the tof uncertainty, which is influenced by both the detector resolution and the source's standard deviation. It is confirmed that with sufficient statistical events, the mean tof can be extracted with an uncertainty that surpasses the detector's resolution, following the principle that uncertainty decreases with the square root of the number of events, represented mathematically as σ/√N.

PREREQUISITES
  • Understanding of time-of-flight (tof) measurement techniques
  • Familiarity with Gaussian distributions and their properties
  • Basic knowledge of statistical analysis and uncertainty propagation
  • Experience with capacitor behavior in electron detection systems
NEXT STEPS
  • Research statistical methods for analyzing time-of-flight data
  • Explore advanced techniques for reducing measurement uncertainty in tof experiments
  • Study the impact of detector resolution on measurement accuracy
  • Learn about Gaussian fitting techniques for data analysis in particle physics
USEFUL FOR

Physicists, experimental researchers, and engineers involved in particle detection and time-of-flight measurements, particularly those working with electron sources and statistical data analysis.

Malamala
Messages
348
Reaction score
28
Hello! I am generating electrons from a 3D gaussian source. The electrons all have the same energy, but the direction is isotropic. The electron source is in between 2 plates that act as a capacitor, and one of them acts as a time of flight (tof) detector. I know the voltage on the plates very well, and I want to extract the center of the gaussian distribution (in one direction only), by measuring the tof of many electrons. So the uncertainty on the position is given by the tof uncertainty.

The distribution of tofs is a gaussian, with the mean being what I need for my measurement and a standard deviation which has contributions from both the standard deviation of the source and the resolution of the tof detector. Is it possible, if I have enough events, to extract the the mean of this tof distribution with an uncertainty better than the resolution of the detector, or that would always be the best I can do? Thank you!
 
Physics news on Phys.org
Malamala said:
Is it possible, if I have enough events, to extract the the mean of this tof distribution with an uncertainty better than the resolution of the detector, or that would always be the best I can do? Thank you!
Yes. With enough statistics you can measure the mean accurately below the resolution of your detector. By resolution, I take it you mean the resolution on the time-of-flight?
 
Twigg said:
Yes. With enough statistics you can measure the mean accurately below the resolution of your detector. By resolution, I take it you mean the resolution on the time-of-flight?
Thank you! Yes, the tof resolution. So should I expect the uncertainty to go like ##\sigma/\sqrt{N}##, where N is the number of events and ##\sigma## is the combined uncertainty (i.e. the detector resolution and the uncertainty in the position of creation of individual electrons)?
 
Yep! If you want mathematical proof for it, it's just the same statistics as a biased coin flip, where "heads" and "tails" refer to adjacent time bins of your detector on either side of the true tof value.
 
In sci-fi when an author is talking about space travellers or describing the movement of galaxies they will say something like “movement in space only means anything in relation to another object”. Examples of this would be, a space ship moving away from earth at 100 km/s, or 2 galaxies moving towards each other at one light year per century. I think it would make it easier to describe movement in space if we had three axis that we all agree on and we used 0 km/s relative to the speed of...

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K