I Time Paradox: A & B's Clocks Move Differently

  • I
  • Thread starter Thread starter SaintRodriguez
  • Start date Start date
  • Tags Tags
    Paradox
SaintRodriguez
Messages
8
Reaction score
1
Two astronauts A and B are traveling at constant speed, one toward the other. From astronaut A's point of view, his partner B's clock is ticking at a slower rate than his. From astronaut B's point of view, it is his partner A's clock ticking at a slower rate. Does this set up a paradox? Because?
 
Physics news on Phys.org
SaintRodriguez said:
Does this set up a paradox?
No.
SaintRodriguez said:
Because?
The relativity of simultaneity. Set up the problem formally for one observer and use the Lorentz transforms to get the other observer's perspective and you'll see what's going on.
 
SaintRodriguez said:
Does this set up a paradox? Because?
No. Because it is not the right form for a paradox.

A paradox is something like ##a<b## and ##b<a##. But that is not what we have here.

Let ##\tau_A## be the proper time of clock A and ##t_A## be the coordinate time in frame where A is at rest. Similarly for ##\tau_B## and ##t_B##.

Then “From astronaut A's point of view, his partner B's clock is ticking at a slower rate than his” means $$\frac{d\tau_B}{dt_A}<1$$

And “From astronaut B's point of view, it is his partner A's clock ticking at a slower rate” means $$\frac{d\tau_A}{dt_B}<1$$

Both of these statements are perfectly compatible. They do not contradict each other. Hence it is not a paradox.
 
  • Like
Likes Demystifier and malawi_glenn
SaintRodriguez said:
Two astronauts A and B are traveling at constant speed, one toward the other. From astronaut A's point of view, his partner B's clock is ticking at a slower rate than his. From astronaut B's point of view, it is his partner A's clock ticking at a slower rate. Does this set up a paradox? Because?
Do you consider the following as a paradox? Because?

From astronaut A's point of view, his partner B moved via a greater spatial distance than himself, because A regards himself to be at rest. From astronaut B's point of view, it is his partner A's travel distance, which is the greater one.
 
  • Like
  • Informative
Likes Demystifier, vela, hutchphd and 4 others
SaintRodriguez said:
Two astronauts A and B are traveling at constant speed, one toward the other. From astronaut A's point of view, his partner B's clock is ticking at a slower rate than his. From astronaut B's point of view, it is his partner A's clock ticking at a slower rate. Does this set up a paradox? Because?
It doesn't lead to a paradox, because the Lorentz transformation from one inertial frame of reference to another is a one-to-one map between coordinates, and the physical laws are covariant, looking the same when expressed in any inertial frame of reference.
 
vanhees71 said:
It doesn't lead to a paradox, because the Lorentz transformation from one inertial frame of reference to another is a one-to-one map between coordinates, and the physical laws are covariant, looking the same when expressed in any inertial frame of reference.
Such a concise explanation.
 

Similar threads

Back
Top