Engineering To engineers: do you often read texts intended for physics majors?

  • Thread starter Thread starter curious__
  • Start date Start date
  • Tags Tags
    Physics
AI Thread Summary
The discussion highlights the similarities and differences between engineering and physics education, particularly in subjects like statics, dynamics, thermodynamics, and electromagnetics. Engineering textbooks are noted for their practical problem-solving approach, often resembling high school physics problems with a focus on numerical calculations. In contrast, physics textbooks delve deeper into mathematical manipulation and physical intuition, with problems that integrate algebra and calculus alongside physics concepts.Participants share their study strategies, emphasizing a blend of resources from both fields to enhance understanding. Some engineering students appreciate the clear organization of engineering texts, which facilitate learning through structured chapters and standardized problems. Conversely, physics students express a desire for more applied learning, feeling that their education leans too heavily on theory without sufficient real-world context.The conversation also touches on the complementary nature of both disciplines, with participants acknowledging the value of exploring texts from the other field to gain broader insights. This exchange of perspectives underscores the importance of interdisciplinary approaches in solving complex problems.
curious__
Messages
9
Reaction score
24
There are many core subjects that engineering and physics share, i.e. statics, dynamics, thermodynamics and electromagnetics.

As an engineering student, I obviously read engineering textbooks for the above-mentioned subjects, and (because of my strong feeling of interest) physics undergraduate textbooks.

Comparing them, well, the level of contents and mathematical rigour of the main texts were nearly the same, but I felt that physics books go somewhat deeper in the techniques of manipulation of mathematical expressions that lead to meaningful physical intuition. But still not quite big differences, and they actually complement each other.

Surprisingly, there are huge differences for the end of chapter problems - the feeling about engineering books is that the problems are very similar to what's in the high school physics problems. Not much algebra and maths, and a lot of numbers and calculations. But for physics books, it's like algebra and calculus 50% + physics 50%. And such problems usually have some meaningful physical interpretations associated with them, so they give us good lessons.

So, my way of learning physics became a combination of various steps like this:

1. Choose some textbooks that are intended for different majors and for different depths of understanding (e.g. if I were to learn about thermodynamics I pick up 'fundamentals of physics', engineering thermodynamics, thermal and statistical physics, physical chemistry books)
2. Try out various problems in a physics major book (in the above case thermal and statistical mechanics), of course with a solutions manual
3. In order to familiarise myself with putting actual numbers and doing calculations precisely and quickly, do some problems in an engineering physics book

Is there anybody else studying like me, or is everybody studying like me, or is nobody studying like me? :)
 
  • Like
Likes yucheng, Useful nucleus and PhDeezNutz
Physics news on Phys.org
As a physics student (recently finished my MS) I have the opposite view. I guess the grass is always greener on the other side. I find a lot of our exposure is overly theoretical and not applied enough; for instance we derive various thermodynamic quantities and relations but don’t really understand what they mean and how they are useful...merely that they exist.

If I find the time I’m going to nab a copy of “Engineering Thermodynamics” by Moran per @Chestermiller ‘s recommendation (Apparently it’s free online from the publisher but I prefer a physical copy). Maybe this will rectify my situation with enough hard work.
 
  • Like
Likes yucheng, Useful nucleus, Demystifier and 2 others
While I was in graduate school (many long years ago), I read Goldstein's Classical Mechanics text through. It was very useful, and I was able to extend the ideas to many actual engineering context without relying on the textbook to lead me there. This is only example I can cite from personal experience.
 
  • Like
  • Informative
Likes vanhees71, curious__ and mpresic3
PhDeezNutz said:
As a physics student (recently finished my MS) I have the opposite view. I guess the grass is always greener on the other side. I find a lot of our exposure is overly theoretical and not applied enough; for instance we derive various thermodynamic quantities and relations but don’t really understand what they mean and how they are useful...merely that they exist.

If I find the time I’m going to nab a copy of “Engineering Thermodynamics” by Moran per @Chestermiller ‘s recommendation (Apparently it’s free online from the publisher but I prefer a physical copy). Maybe this will rectify my situation with enough hard work.

Your answer actually gave me a lot of inspiration - "the grass is always greener on the other side". I never thought by any chance that physicists would intentionally read engineering texts. Then they are really like complementary things. In the original post I kind of criticised engineering texts so now I will mention some of the good things about them.

Indeed for finding real-world applications of classical mechanics, some introductory texts in mechanical engineering (like thermodynamics by Moran) hugely help, especially in their end-of-chapter problems which focus hugely on numerical calculations and include realistic diagrams of machines.

I found that engineering texts have some advantages in that they often distinguish contents very clearly and organise chapters in a very nice order - so that it's kind of easier for students to learn from - I guess this is because many standard engineering courses (like mechanical, electrical, etc.) at an undergraduate level do not quite have links to the areas of modern physics, so even the order of contents have been shaped and standardised by many authors since early 20th century.

For example, engineering dynamics books divide chapters into 1) kinematics of a point mass 2) kinetics of a point mass 3) kinematics of a rigid body 4) kinetics of a rigid body, and engineering electromagnetics books divide chapters into 1) electrostatics 2) magnetostatics 3) electrodynamics 4) electromagnetic fields 5) real-world applications, whereas in the pure physics texts the boundaries between them were somewhat less clear and at the end of such books authors introduced interesting links to quantum mechanics or relativity.

Also, the end of chapter problems (even for what requires some serious engineering maths like vector calculus or differential equations than simple algebra) are better standardised, such as in electromagnetics and fluid mechanics. I guess (without proper reasoning) it's because the possible applications to the industries are quite obvious, so the authors can produce a lot of high-quality problems corresponding to each subdivision of fields. But this kind of organisation causes limitation to the diversity of the physical concepts invited in the problems, so for engineers who are keen to learn about good insights of viewing the science, physics problems for physicists are definitely worth trying out!
 
  • Like
Likes vanhees71 and PhDeezNutz
PhDeezNutz said:
I guess the grass is always greener on the other side.
It's always insightful to see things from different perspectives. I am a theoretical physicist who reads physics literature from the points of view of theoretical physics, mathematical physics, philosophy of physics, popularization of physics, experimental physics and engineering physics. (Did I miss some?)
 
  • Like
Likes vanhees71, PhDeezNutz and curious__
Demystifier said:
It's always insightful to see things from different perspectives. I am a theoretical physicist who reads physics literature from the points of view of theoretical physics, mathematical physics, philosophy of physics, popularization of physics, experimental physics and engineering physics. (Did I miss some?)

Absolutely. If we didn’t have different perspectives from different disciplines I don’t think problems would ever get solved.
 
  • Like
Likes Demystifier, curious__ and vanhees71
For the following four books, has anyone used them in a course or for self study? Compiler Construction Principles and Practice 1st Edition by Kenneth C Louden Programming Languages Principles and Practices 3rd Edition by Kenneth C Louden, and Kenneth A Lambert Programming Languages 2nd Edition by Allen B Tucker, Robert E Noonan Concepts of Programming Languages 9th Edition by Robert W Sebesta If yes to either, can you share your opinions about your personal experience using them. I...
Hi, I have notice that Ashcroft, Mermin and Wei worked at a revised edition of the original solid state physics book (here). The book, however, seems to be never available. I have also read that the reason is related to some disputes related to copyright. Do you have any further information about it? Did you have the opportunity to get your hands on this revised edition? I am really curious about it, also considering that I am planning to buy the book in the near future... Thanks!
I’ve heard that in some countries (for example, Argentina), the curriculum is structured differently from the typical American program. In the U.S., students usually take a general physics course first, then move on to a textbook like Griffiths, and only encounter Jackson at the graduate level. In contrast, in those countries students go through a general physics course (such as Resnick-Halliday) and then proceed directly to Jackson. If the slower, more gradual approach is considered...
Back
Top