Tony Rothman Questions E=mc^2 in American Scientist

  • Context: Graduate 
  • Thread starter Thread starter mathman
  • Start date Start date
  • Tags Tags
    Doubt
Click For Summary

Discussion Overview

The discussion centers around an article by Tony Rothman in American Scientist that questions the validity of the equation E=mc². Participants explore the historical context of the equation, its derivation, and implications at high energies, while also addressing the accessibility of the article and the claims made within it.

Discussion Character

  • Debate/contested
  • Historical
  • Technical explanation

Main Points Raised

  • Some participants question the validity of Rothman's assertions regarding E=mc², particularly in the context of high-energy physics.
  • Others argue that E=mc² is frequently misunderstood and that its validity is contingent on specific conditions, such as zero momentum.
  • A participant notes that Rothman's article appears to be historical in nature and cites earlier papers that derived E=3/4 mc², raising questions about the universality of E=mc².
  • Concerns are raised about Rothman's interpretation of Einstein's work, particularly regarding the derivation of E=mc² and its applicability beyond low velocities.
  • Some participants reference Planck's critique of Einstein's derivation, suggesting that a complete understanding of mass-energy equivalence requires consideration of internal processes.
  • Technical discussions include the relationship between energy, momentum, and the conditions under which E=mc² holds true, with references to the energy-momentum relation.
  • There is mention of the accessibility of Rothman's article, which is behind a paywall, and the implications of discussing its content without direct access.

Areas of Agreement / Disagreement

Participants express a range of views, with no consensus on the validity of Rothman's claims or the interpretation of E=mc². Disagreement exists regarding the historical context and the implications of the equation in modern physics.

Contextual Notes

Some participants highlight limitations in Rothman's arguments, particularly regarding the historical derivations of E=mc² and the conditions under which it is considered valid. There are unresolved questions about the completeness of Einstein's derivation and the implications for modern interpretations of mass-energy equivalence.

mathman
Science Advisor
Homework Helper
Messages
8,130
Reaction score
575
TL;DR
Amer. Scientist Article by Tony Rothman questions ##E=mc^2##. Questions?
In the latest issue of American Scientist there is an article by Tony Rothman questioning ##E=mc^2##. Are the assertions made in the article valid? Are there comments by other physicists available?
 
Physics news on Phys.org
The famous formula is valid, but it is also frequently misunderstood.

That said, I have no knowledge about the specific article in question. Maybe you can identify a particular question that concerns you from the article?
 
The author has a homepage where there is a link to the article. I don't know if accessing the article through this link violates copyright law.
 
  • Like
Likes   Reactions: Nugatory and Dale
mathman said:
Are the assertions made in the article valid?
The article seemed mostly historical. I don’t know the history, so I have no reason to dispute it. Was there something you found particularly concerning?
 
From the principle of relativity we know that the very weak radiation coming out of the rear of a very fast moving heater and the very strong radiation coming out of the front of the same heater exert opposite forces on the heater.

The physicists that tried to calculate the radiation reaction force on a moving heater did not make use of that simple fact. I mean they did not notice that if the calculated forces cause the heater to accelerate, then the forces have been miscalculated.
 
Last edited:
Dale said:
The article seemed mostly historical. I don’t know the history, so I have no reason to dispute it. Was there something you found particularly concerning?
The author cited (pre 1905) papers where people derived ##E=\frac{3}{4}mc^2## rather than the usual. He wondered whether ##E=mc^2## was valid at high energies.
 
Last edited:
mathman said:
He wondered whether ##E=mc^2## was valid at high energies.
I strongly suspect he has never published such claims in a peer-reviewed journal--because he knows the reviewers would call bullshit.

In the second bullet under "Quick Take" on the page you linked to, it says: "Einstein's famous 1905 relativity paper is valid only for low velocities", which is false. Einstein's derivation of the Lorentz transformation in that paper is valid for any relative velocity (less than ##c##, of course). His derivation of ##E = mc^2## in that paper, of course, is not valid for any velocity, but that's because that formula itself is only valid for zero velocity--see next paragraph.

It then says "in six further attempts he never succeeded in producing a universal derivation of ##E = mc^2##". I'm not sure what "six further attempts" he's talking about, but since the equation ##E = mc^2## is only valid at rest (zero velocity) to begin with, of course Einstein, or anyone else, could never produce a "universal derivation" of the formula. So this statement strikes me as highly disingenous.
 
  • Like
Likes   Reactions: PeroK
mathman said:
The author cited (pre 1905) papers where people derived ##E=\frac{3}{4}mc^2## rather than the usual. He wondered whether ##E=mc^2## was valid at high energies.
##E=mc^2## is only valid for ##p=0##. For non-zero momentum the relationship is ##m^2 c^2=E^2/c^2-p^2##. The factor of 3/4 is not right.
 
  • Like
Likes   Reactions: cianfa72
  • #12
PeterDonis said:
In the second bullet under "Quick Take" on the page you linked to, it says: "Einstein's famous 1905 relativity paper is valid only for low velocities", which is false. Einstein's derivation of the Lorentz transformation in that paper is valid for any relative velocity (less than ##c##, of course). His derivation of ##E = mc^2## in that paper, of course, is not valid for any velocity, but that's because that formula itself is only valid for zero velocity--see next paragraph.
It then says "in six further attempts he never succeeded in producing a universal derivation of ##E = mc^2##". I'm not sure what "six further attempts" he's talking about, but since the equation ##E = mc^2## is only valid at rest (zero velocity) to begin with, of course Einstein, or anyone else, could never produce a "universal derivation" of the formula. So this statement strikes me as highly disingenous.
Rothman wasn't referring to Einstein's "Electrodynamics of moving bodies", but to Einsteins follow-up paper in which he derived E=mc², namely the paper “Does the Inertia of a Body Depend on Its Energy Content?”. In general, Rothman's statements were based on Ohanian's analysis of Einstein's multiple attempts of deriving E=mc²:
  1. Ohanian, H. 2009. Did Einstein prove E = mc2? Studies in History and Philosophy of Modern Physics 40(2):167–173. For a similar preprint version see: https://arxiv.org/abs/0805.1400

So it wasn't about the question whether the formula E=mc² is correct or not, but whether Einstein correctly derived it or not. Namely, do we have to consider stresses etc. in order to conclusively derive E=mc² ? Indeed, it was Planck as early as in 1907 who argued that Einstein's derivation, is only correct to first approximation, while a complete statement of mass-energy equivalence requires the consideration of internal processes too.
 
Last edited:
  • #13
mathman said:
The author cited (pre 1905) papers where people derived ##E=\frac{3}{4}mc^2## rather than the usual. He wondered whether ##E=mc^2## was valid at high energies.
This has been done in a time, where SR hasn't really existed, and even today more than 115 years later people don't know von Laue's theorem. If ##j^{\mu}## is a current, then
$$Q^{\mu}=\int \mathrm{d}^3 x j^{\mu}(t,\vec{x})$$
is only a four-vector if ##\partial_{\mu} j^{\mu}=0##.

Since for an electromagnetic field with non-vanishing ##j^{\mu}## the energy-momentum tensor of the em. field alone is not conserved,
$$P^{\mu}=\int \mathrm{d}^3 x T^{\mu 0}$$
is not a four-vector, and that's the origin of the famous "4/3 problem".

Nevertheless you can always choose some preferred inertial reference frame depending on the physical situation, specify the spatial 3D hypersurface there, and then define
$$P^{\mu}=\int \mathrm{d}^3 \sigma_{\nu} T^{\mu \nu}$$
in a manifestly covariant way, no matter whether ##\partial_{\mu} T^{\mu \nu}=0## or not. See the corresponding discussion in Jackson, Classical Electrodynamics.
 
  • #14
Histspec said:
Rothman wasn't referring to Einstein's "Electrodynamics of moving bodies", but to Einsteins follow-up paper in which he derived E=mc², namely the paper “Does the Inertia of a Body Depend on Its Energy Content?”.
If that's the case, Rothman probably shouldn't have said "Einstein's famous 1905 relativity paper", since that is going to be taken by most readers to refer to the "Electrodynamics of moving bodies" paper.

Histspec said:
So it wasn't about the question whether the formula E=mc² is correct or not, but whether Einstein correctly derived it or not. Namely, do we have to consider stresses etc. in order to conclusively derive E=mc² ? Indeed, it was Planck as early as in 1907 who argued that Einstein's derivation, is only correct to first approximation, while a complete statement of mass-energy equivalence requires the consideration of internal processes too.
Then I would say that, based on our modern view, the fundamental error here is in considering the formula ##E = m c^2## to be a general expression of "mass-energy equivalence", instead of just the ##p = 0## special case of the general energy-momentum relation ##E^2 = p^2 c^2 + m^2 c^4##. In the modern view, "mass-energy equivalence" is not expressed by any single formula in relativity; depending on what you take that phrase to mean, it could be expressed by choosing units in which ##c = 1##, or by the equations describing processes in which particles with nonzero rest mass are converted to photons, or vice versa. There simply isn't any general notion of "energy" and "mass" for which the formula ##E = m c^2## applies in all cases.
 
  • Like
Likes   Reactions: cianfa72 and vanhees71

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 18 ·
Replies
18
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
35
Views
5K
  • · Replies 9 ·
Replies
9
Views
15K