Torque to rotate a object on the ground about its own axis

AI Thread Summary
To calculate the torque required to rotate a square block on the ground with a coefficient of friction (COF) of 0.3, one can use the formula Torque = 2/3 * COF * m * g * r for a disc. The discussion highlights that breaking the block's footprint into sections can theoretically help in determining the torque, but it complicates the calculations as the number of sections increases. It is noted that the moment of inertia may be relevant for understanding the radial area distribution. The torque needed remains consistent regardless of how far the object is rotated, as it is primarily influenced by the frictional force, which is dependent on the weight and COF. The conversation emphasizes the importance of integrating forces over the shape's area to derive the required torque.
gaz097
Messages
1
Reaction score
0
TL;DR Summary
Does a equation exist for calculating torque for rotating a object about its cog axis where the only reaction forces are its own weight at a COF.
Hi,

I have an object sitting on the ground, with a coefficient of friction (COF) of 0.3.
Lets say it is a square block, and will rotate on its central axis.

How much torque is required to rotate this block? I am ignoring inertia weights as will be rotating very slowly.I can solve my problem by breaking the assumed footprint up into sections (Quadrants) and applying the force to slide the quadrant at its center point at a radius to the original shape, which works in theory but continues to increase in value the more sections it is broken up into and i imagine converging to a value. This sounds like a integral that i have forgotten many years ago.

Is this a constant for different COF values, shapes?
I assume an equation could exist for different equal shapes of torque, or at least for a circle.
 
Engineering news on Phys.org
Welcome to PF.
The block down force will be; F = m*g.
The force needed to translate the block will be; F= m*g*CoF .
The torque needed to rotate the block will be less, since there is less area, and an advantage near the neutral axis.

For a disc of radius r, and mass m.
Torque = 2/3 * CoF * m * g * r .
https://engineeringstatics.org/Chapter_09-disc-friction.html

Even though you are not concerned with inertia, the moment of inertia of a rotating square will be useful in determining the radial area distribution of the footprint.
 
Last edited:
gaz097 said:
Summary: Does a equation exist for calculating torque for rotating a object about its cog axis where the only reaction forces are its own weight at a COF.

I can solve my problem by breaking the assumed footprint up into sections (Quadrants) and applying the force to slide the quadrant at its center point at a radius to the original shape, which works in theory but continues to increase in value the more sections it is broken up into and i imagine converging to a value. This sounds like a integral that i have forgotten many years ago.
Not sure what you mean there -- applying the force to slide the quadrant at its center point at a radius to the original shape.

There are two ways to do this, actually a few more, but for a circle, the easier ones are,
Break the circle into thin circumferential r + dr's from 0 to R, find the torque on each, and add them all up.
Break the circle into thin wafer sized wedges, rdθ, find the torque on each, and add them all up.

It doesn't matter how far the circle is rotated, as the torque does not depend upon that, the same as for a translation, the force required to move the object any distance depends upon the friction f = μW.

so for the circle, and the wedge, if rotated dθ, the friction df on the wedge will be μdW.
Adding up the df's of all the wedges the friction will add up to μW ---- f = μW.

@gaz097 Can you find the torque required?
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top