I just had to put my 2¢ in on this one...
Torque is a pretty useless figure, but it can be a reflection of low RPM HP, and by extension, often reflect a wider power band.
HP is a much better figure, but the HP number you are given is peak HP, which in and of itself isn't too useful either in an automotive application unless the powerband is wide or you have a lot of gears.
Ultimately, the best data you could get would be a HP curve from idle to redline and all engine speeds in between.
See, the power a car can produce is inherently based on speed as much as force, which torque doesn't take into account. If I stood on a 1 foot long wrench pointed out at a 3:00 or 9:00 position, I would be putting 160 lb/ft of torque onto it. Which is more than my car. Does that mean I could pedal my car faster than the engine can pull it? Of course not, because in order to move the 3,000lb boat, I'd have to change my pedaling to a very slow speed. Even though I can produce that much torque, I could only get it around a few times a minute, resulting in less than 1 HP. Which is a better representation of how much power I can actually produce.
But before the torque elitists jump on me, peak HP doesn't mean too much either. Suppose a car can produce 200 HP at 6,500 RPM, but it produces only 50 HP at 6,000 RPM and redlines at 6,600. (Of course I'm using extreme examples for both of these, I'm well aware. I'm illustrating a point.) Unless you can shift really fast and have a few dozen gears (or a very effective CVT) you've got a dog-slow car.
Basically, what I'm saying is, what makes you fast is a good, wide curve of high HP. Torque is in and of itself completely useless, and peak HP is only worth marginally more. The value of these figures is in what they can reflect (but don't always, which is why both are imperfect figures.) Torque peaks are at lower RPMs, so they generally reflect how low down your powerband appears. HP peaks are higher and generally reflect how long an engine's powerband lasts at the high end.
So let's take it to a real-world situation. Let's take the most extreme examples of HP vs. Torque and compare them.
Honda Civic Si with the K20 engine, and a Chevrolet Camaro RS with the Throttle Body injected engine (This is late '80s, early '90s model).
The Honda comes in the lead in peak HP with 197 against the Camaro's 170, but the Camaro's mammoth 5.0 V8 has 255 lb/ft of peak torque, versus the Honda's measly 139. So which is better?
These are published 0-60 times:
Camaro: 7.4
Civic Si: 7.2
Of course, people have gotten better times on both with stock cars, and both can be a lot faster with modification, so don't flame me for conservative figures. Those are both official published figures.
So what do we have there? Not a whole lot of difference.
The Camaro will have much more power at the bottom. It's 170 HP comes at an astonishingly low 3800 RPM, courtesy of its huge displacement. The Civic, by comparison, feels its engine's tiny displacement, and by its torque peak of a far higher 6200 RPM is still falling behind at 164 HP (remember, HP is torque x RPM / 5252). Up until this point, advantage: Camaro.
However, shortly after that, the Camaro feels its archaic pushrod engine design and quickly starts to dump torque, and consequently HP to friction, inertia, and poor ventilation as RPMs increase, and then it chokes on its low 5,000 RPM redline. The Si, by comparison, breathes much better through 4 valves and doesn't have pushrod inertia and keeps increasing in power until a dizzying 7800 RPM, and then it keeps running at well over the Camaro's max output past its 8,000 RPM redline up until about 8,250 when the rev limiter cuts you off. Advantage: Si.
So which is ultimately better?
Well, that depends. The Honda is ultimately faster. But it is absolutely useless with an auto, which runs in the low RPM range, hence why all Si's are manuals. And you have to know what you are doing. It is much easier for a novice driver to run a 7.4 in a Camaro than a 7.2 in an Si. In the Si's defense, it also uses a lot less gas and weighs less, allowing the car to corner better.
Ultimately, it comes down to the driver. Proving one to be better wasn't my intention (the comparison is ridiculous anyway... a 15 year old car with a 5L V8 to a new car with a 2L I4) and I don't drive either, so I don't much care. The point is, neither is a perfect figure, and are in fact, in and of themselves, pretty useless. Their value is in reflecting points of an overall HP curve.
However, I do have a bone to pick with Briggs & Stratton for using torque instead of HP on their new engines. Peak horsepower really *is* the best figure on small engines that run at a constant RPM, and I think they are just using torque (which is, to be honest, a pretty useless figure on a generally fixed-speed engine) to jack up their performance figures since they are increasingly unable to compete in HP per CC against Honda and Robin engines with OHC valvetrains and are confusing the whole small engine comparison process along the way.
Alright, that's enough for now.