Hi; I've been doing some research for my master's on gauge theory in the language of fiber bundles, and something occurred to me. Both GR and the Standard Model (SM) can be described in terms of connections (potentials) and curvatures (field strengths), but there's this generalization of GR, Einstein-Cartan (EC) theory, which incorporates a new object, the torsion 2-form, as something that might have physical importance, as it seems to be necessary to deal with couplings with fields with spin (e.g., Dirac fermions). Regardless of that being correct or not, torsion is a geometrical concept that (theoretically) can also be adopted in the principal bundle formalism of SM and Yang-Mills theories in general, and, carrying on the analogy with EC, we could talk about the spin of, say, SU(N) (not the usual "Lorentzian" spin, but the more general definition of Spin as double cover of a rotation group or something like that), introduce torsion, couple terms à la EC, and then derive new, potentially observable coupling terms involving the SU(N)-spin fields, right? However, I haven't found anything in the literature that deals with torsion in a field-theoretical context without involving EC or another theory of gravitation; does anyone know of such work, or an argument why torsion (in the generalized, purely geometrical sense referred above) isn't important to particle physics research?(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A Torsion forms and particle physics

Have something to add?

Draft saved
Draft deleted

Loading...

Similar Threads - Torsion forms particle | Date |
---|---|

I Some Question on Differential Forms and Their Meaningfulness | Feb 19, 2018 |

I Torsion on cylinder described differentially | Oct 31, 2016 |

Geodesic curvature, normal curvature, and geodesic torsion | Mar 3, 2014 |

2nd tangential angle and torsion | Feb 25, 2014 |

Interpretation of torsion vs riemann tensor | May 14, 2012 |

**Physics Forums - The Fusion of Science and Community**