Total Josephson current through junction with magnetic field

Click For Summary
SUMMARY

The discussion focuses on calculating the total Josephson current through a Josephson Junction in the presence of a magnetic field, specifically with the magnetic field denoted as ##B = \mu_oH## in the z-direction. The integral for the current is computed as $$\int_{\frac {-d_x}{2}}^{\frac {d_x}{2}}\int_{\frac {-d_y}{2}}^{\frac {d_y}{2}} j_0\sin(\psi_0 + \frac{2\pi \phi}{\phi_0d_x}x)d_xd_y$$, leading to the expression $$d_xd_yj_0 \frac {\phi_0}{2\pi \phi} \left[ \cos(\psi_0 - \frac{\pi \phi}{\phi_0}) - \cos(\psi_0 + \frac{\pi \phi}{\phi_0}) \right]$$. The participants conclude that the integration limits should be adjusted to reflect the correct coordinate system, integrating over ##x## and ##z## instead of ##x## and ##y##.

PREREQUISITES
  • Understanding of Josephson Junctions and their properties
  • Familiarity with magnetic fields in superconductivity
  • Knowledge of double integrals in calculus
  • Proficiency in trigonometric identities and their application in physics
NEXT STEPS
  • Study the derivation of Josephson equations in superconductivity
  • Learn about the effects of magnetic fields on Josephson Junctions
  • Explore coordinate transformations in integrals
  • Investigate common errors in integration limits and their impact on results
USEFUL FOR

Physicists, electrical engineers, and researchers working with superconductivity and Josephson Junctions, particularly those involved in theoretical calculations and experimental setups.

Mr_Allod
Messages
39
Reaction score
16
Homework Statement
Show that the total Josephson current though a Josephson Junction is:
$$d_xd_yj_0 \frac {\phi_0}{2\pi \phi} \left[ \cos(\psi_0) - \cos(\psi_0 + \frac{2\pi \phi}{\phi_0}) \right]$$
Relevant Equations
Total flux through the junction: ##\phi = Bd_xd_y##
Current density at position x: ##J(x) = j_0\sin(\psi_0 + \frac{2\pi x}{\phi_0}Bd_y)##
Hello there,

I am given a diagram of a Josephson Junction like so:

JJ.PNG

With a magnetic field ##B = \mu_oH## in the z-direction. I'm reasonably sure ##d_x,d_y,d_z## are normal lengths, not infinitesimal lengths although that is up for debate. Using the above equations I rearrange the expression for J(x) to be in terms of ##\phi## and compute the following integral:

$$\int_{\frac {-d_x}{2}}^{\frac {d_x}{2}}\int_{\frac {-d_y}{2}}^{\frac {d_y}{2}} j_0\sin(\psi_0 + \frac{2\pi \phi}{\phi_0d_x}x)d_xd_y$$

This yielded:

$$d_xd_yj_0 \frac {\phi_0}{2\pi \phi} \left[ \cos(\psi_0 - \frac{\pi \phi}{\phi_0}) - \cos(\psi_0 + \frac{\pi \phi}{\phi_0}) \right]$$

Where ##\psi_0## is the phase difference at ##x=0##. This is not the same as the expression we were given in the problem but it is quite similar which makes me think I am on the right track. Is there something else I need to do with the expression we are given before integrating to find the total current?
 
Physics news on Phys.org
Mr_Allod said:
$$\int_{\frac {-d_x}{2}}^{\frac {d_x}{2}}\int_{\frac {-d_y}{2}}^{\frac {d_y}{2}} j_0\sin(\psi_0 + \frac{2\pi \phi}{\phi_0d_x}x)d_xd_y$$

Shouldn't the integration be over ##x## and ##z## rather than ##x## and ##y##?

Maybe the origin of the coordinate system is such that ##x## ranges from ##0## to ##d_x## rather than from ##-d_x/2## to ##d_x/2## and ##z## ranges from ##0## to ##d_z## rather than from ##-d_z/2## to ##d_z/2##.
 
TSny said:
Shouldn't the integration be over ##x## and ##z## rather than ##x## and ##y##?

Maybe the origin of the coordinate system is such that ##x## ranges from ##0## to ##d_x## rather than from ##-d_x/2## to ##d_x/2## and ##z## ranges from ##0## to ##d_z## rather than from ##-d_z/2## to ##d_z/2##.
I think you're right on both counts. I suppose if I had paid more attention to the figure I would have realized I'm using the wrong origin. Integrating from ##0## to ##d_{x,z}## gives the right answer. With regards to the area of integration, I think I was just forcing the solution to be in line with the expression we're given and it's entirely possible there was a typo in it. It wouldn't be the first time.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
19
Views
3K
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
Replies
8
Views
1K
Replies
3
Views
527
  • · Replies 6 ·
Replies
6
Views
3K
Replies
5
Views
2K