Total Josephson current through junction with magnetic field

Mr_Allod
Messages
39
Reaction score
16
Homework Statement
Show that the total Josephson current though a Josephson Junction is:
$$d_xd_yj_0 \frac {\phi_0}{2\pi \phi} \left[ \cos(\psi_0) - \cos(\psi_0 + \frac{2\pi \phi}{\phi_0}) \right]$$
Relevant Equations
Total flux through the junction: ##\phi = Bd_xd_y##
Current density at position x: ##J(x) = j_0\sin(\psi_0 + \frac{2\pi x}{\phi_0}Bd_y)##
Hello there,

I am given a diagram of a Josephson Junction like so:

JJ.PNG

With a magnetic field ##B = \mu_oH## in the z-direction. I'm reasonably sure ##d_x,d_y,d_z## are normal lengths, not infinitesimal lengths although that is up for debate. Using the above equations I rearrange the expression for J(x) to be in terms of ##\phi## and compute the following integral:

$$\int_{\frac {-d_x}{2}}^{\frac {d_x}{2}}\int_{\frac {-d_y}{2}}^{\frac {d_y}{2}} j_0\sin(\psi_0 + \frac{2\pi \phi}{\phi_0d_x}x)d_xd_y$$

This yielded:

$$d_xd_yj_0 \frac {\phi_0}{2\pi \phi} \left[ \cos(\psi_0 - \frac{\pi \phi}{\phi_0}) - \cos(\psi_0 + \frac{\pi \phi}{\phi_0}) \right]$$

Where ##\psi_0## is the phase difference at ##x=0##. This is not the same as the expression we were given in the problem but it is quite similar which makes me think I am on the right track. Is there something else I need to do with the expression we are given before integrating to find the total current?
 
Physics news on Phys.org
Mr_Allod said:
$$\int_{\frac {-d_x}{2}}^{\frac {d_x}{2}}\int_{\frac {-d_y}{2}}^{\frac {d_y}{2}} j_0\sin(\psi_0 + \frac{2\pi \phi}{\phi_0d_x}x)d_xd_y$$

Shouldn't the integration be over ##x## and ##z## rather than ##x## and ##y##?

Maybe the origin of the coordinate system is such that ##x## ranges from ##0## to ##d_x## rather than from ##-d_x/2## to ##d_x/2## and ##z## ranges from ##0## to ##d_z## rather than from ##-d_z/2## to ##d_z/2##.
 
TSny said:
Shouldn't the integration be over ##x## and ##z## rather than ##x## and ##y##?

Maybe the origin of the coordinate system is such that ##x## ranges from ##0## to ##d_x## rather than from ##-d_x/2## to ##d_x/2## and ##z## ranges from ##0## to ##d_z## rather than from ##-d_z/2## to ##d_z/2##.
I think you're right on both counts. I suppose if I had paid more attention to the figure I would have realized I'm using the wrong origin. Integrating from ##0## to ##d_{x,z}## gives the right answer. With regards to the area of integration, I think I was just forcing the solution to be in line with the expression we're given and it's entirely possible there was a typo in it. It wouldn't be the first time.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top