- 36,406
- 15,124
- TL;DR Summary
- I am looking for a transformation for Lemaitre coordinates to standard Schwarzschild coordinates.
Lemaitre coordinates are a nice set of coordinates for describing observers free-falling (aka rain observers) in a Schwarzschild spacetime. Such observers have very easy geodesics that are just constant coordinate ##\rho## and the time coordinate ##\tau## is equal to their proper time ##\sqrt{-ds^2}##.
The transformation between Lemaitre coordinates and Schwarzschild coordinates is given as: $$d\tau=dt+\sqrt{\frac{R}{r}}\left( 1-\frac{R}{r} \right)^{-1} dr$$$$d\rho=dt+\sqrt{\frac{r}{R}}\left( 1-\frac{R}{r} \right)^{-1} dr$$ where ##r## and ##t## are the Schwarzschild radial and time coordinates and ##\rho## and ##\tau## are the Lemaitre position and time coordinates and ##R## is the Schwarzschild radius.
I would like to get ##r## and ##t## in terms of ##\tau## and ##\rho##, but I don't actually know where to go from here. Can I just integrate like $$\int d\tau=\int dt+\int \sqrt{\frac{R}{r}}\left( 1-\frac{R}{r} \right)^{-1} dr$$to get$$\tau=t+2 \sqrt{r R} - 2 R \tanh^{-1} \left( \sqrt{\frac{r}{R}} \right)$$
The transformation between Lemaitre coordinates and Schwarzschild coordinates is given as: $$d\tau=dt+\sqrt{\frac{R}{r}}\left( 1-\frac{R}{r} \right)^{-1} dr$$$$d\rho=dt+\sqrt{\frac{r}{R}}\left( 1-\frac{R}{r} \right)^{-1} dr$$ where ##r## and ##t## are the Schwarzschild radial and time coordinates and ##\rho## and ##\tau## are the Lemaitre position and time coordinates and ##R## is the Schwarzschild radius.
I would like to get ##r## and ##t## in terms of ##\tau## and ##\rho##, but I don't actually know where to go from here. Can I just integrate like $$\int d\tau=\int dt+\int \sqrt{\frac{R}{r}}\left( 1-\frac{R}{r} \right)^{-1} dr$$to get$$\tau=t+2 \sqrt{r R} - 2 R \tanh^{-1} \left( \sqrt{\frac{r}{R}} \right)$$