Asphyxiated
- 263
- 0
Homework Statement
\int^{5}_{1} \frac{x}{x+1} dx
using dx = .5
Homework Equations
\sum^{a}_{b} \frac {f(x)+f(x+dx)}{2} dx = [\frac{1}{2}f(x_{0})+f(x_{1})+\cdots+f(x_{n-1})+\frac{1}{2}f(x_{n})]dx
The Attempt at a Solution
TAI = Trapazoidal Approximation Input value
x_{0}=1 \rightarrow f(x_{0})=\frac {1}{2} \rightarrow TAI = \frac{1}{2}\frac{1}{2} =\frac{1}{4}
x_{1} = 1.5 \rightarrow f(x_{1}) = \frac{1.5}{2.5} \rightarrow TAI = \frac{1.5}{2.5}
x_{2} = 2 \rightarrow f(x_{2}) = \frac{2}{3} \rightarrow TAI = \frac{2}{3}
x_{3} = 2.5 \rightarrow f(x_{3})= \frac{2.5}{3.5} \rightarrow TAI = \frac {2.5}{3.5}
x_{4} = 3 \rightarrow f(x_{4}) = \frac{4}{5} \rightarrow TAI = \frac {4}{5}
x_{5} = 3.5 \rightarrow f(x_{5})= \frac{3.5}{4.5} \rightarrow TAI = \frac {3.5}{4.5}
x_{6} = 4 \rightarrow f(x_{6}) = \frac {4}{5} \rightarrow TAI = \frac {4}{5}
x_{7} = 4.5 \rightarrow f(x_{7}) = \frac{4.5}{5.5} \rightarrow TAI = \frac {4.5}{5.5}
x_{8} = 5 \rightarrow f(x_{8}) = \frac {5}{6} \rightarrow TAI = \frac{1}{2}\frac{5}{6} = \frac {5}{12}
so now, following the formula I add up all the TAI values, and the 1/2's have already been applied, so:
\frac{1}{4} + \frac {1.5}{2.5} + \frac{2}{3} + \frac{2.5}{3.5} + \frac {3}{4}+ \frac{3.5}{4.5} + \frac {4}{5} + \frac {4.5}{5.5} + \frac {5}{12} = 5.843578644 = \frac{20248}{3465}
and then I multiply the sum by dx which is .5:
\frac {20248}{3465} * \frac {1}{2} = 2.921789
the book states that the answer they are looking for is 2.8968
and for E(dx) (error) I take the second derivative:
y = \frac {x}{x+1}
y' = \frac {(x+1)(1)-(x)(1)}{(x+1)^{2}}
y' = \frac {x+1-x}{(x+1)^{2}}
y' = \frac {1}{(x+1)^{2}}
which the same as:
y' = (x+1)^{-2}
so:
y''= -2(x+1)^{-3}
and the formula for error is:
|f''(x)| \leq M for a \leq x \leq b
and:
E(dx)= \frac {b-a}{12} M (dx)^{2}
so now:
|f''(1)| = .25
|f''(5)| = .00926
so f'' has M at 1 so to find error we do:
\frac {5-1}{12}(.25)(.25)^{2} = \frac {1}{192}
the book states that the correct E(dx) is \frac {1}{48}
I have done this many times over and can not find where I went wrong, especially with the actually summing in the first part.