MHB Triangle ABC has area 25*sqrt(3). if Angle BAC=30 degrees, find |AC|=|BC|=?

AI Thread Summary
Triangle ABC has an area of 25√3 and angle BAC measuring 30 degrees. The discussion focuses on finding the lengths of sides AC and BC, which are equal in this isosceles triangle. The area formula used is 1/2 * a^2 * sin(120°), leading to the equation 25√3 = 1/2 * a^2 * (√3/2). After solving, the correct side length is determined to be 10√3. The question about the answer being 10 * 4th root(3) is clarified as incorrect.
Elissa89
Messages
52
Reaction score
0
Triangle ABC has area 25*sqrt(3). if Angle BAC=30 degrees, find |AC|=|BC|=?

the answer I got was 10*4th root(3)

Is this correct?

I am asking because someone other than my professor wrote the study guid for us for the final and I am not 100% sure what |AC|=|BC| means as my professor never used it. I'm assuming it means side lengths of the triangle.
 
Mathematics news on Phys.org
Elissa89 said:
Triangle ABC has area 25*sqrt(3). if Angle BAC=30 degrees, find |AC|=|BC|=?

the answer I got was 10*4th root(3)

Is this correct?

I am asking because someone other than my professor wrote the study guid for us for the final and I am not 100% sure what |AC|=|BC| means as my professor never used it. I'm assuming it means side lengths of the triangle.

the triangle is isosceles with $m\angle C = 120^\circ$ and $a = BC = b = AC$

$Area = \dfrac{1}{2}ab\sin(C)$

$25\sqrt{3} = \dfrac{1}{2}a^2 \sin(120^\circ)$

try again to solve for $a$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top