MHB Tricky complex analysis questions....

Zukias
Messages
5
Reaction score
0
i.
Let f and g be functions with a pole at c. Create rules (and prove them) about how we can combine f and g at c.

and ii: Find the poles of the function :
\frac{cotz+cosz}{sin2z}

and classify these poles using part i.
 
Physics news on Phys.org
Do you mean what happens to c when considering f+g ?
 
ZaidAlyafey said:
Do you mean what happens to c when considering f+g ?

I think it means when functions are multiplied, added, substracted, divided etc, that's what I'm assuming anyway
 
I'll say write the Laurent expansion of f and g around the pole c and see what happens when you apply the arithmetic operations on the series.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 0 ·
Replies
0
Views
2K
Replies
7
Views
2K
Replies
7
Views
4K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
4
Views
3K