Trigonometric Identity Questions

Click For Summary
SUMMARY

The forum discussion centers on trigonometric identities, specifically addressing the identity $\sin\theta=\frac{1}{\csc\theta}$ and its validity despite $\sin\pi=0$ and $\csc\pi$ being undefined. Participants emphasize that the identity holds when both sides are defined, and they explore limits to clarify the behavior of these functions as they approach critical points. Additionally, the discussion includes proving the identity $\cos(\theta + \frac{\pi}{2}) = -\sin\theta$ using the addition formula and unit circle values.

PREREQUISITES
  • Understanding of trigonometric functions and their properties
  • Familiarity with limits and continuity in calculus
  • Knowledge of the unit circle and angle addition formulas
  • Basic algebraic manipulation involving limits and discontinuities
NEXT STEPS
  • Study the properties of the cosecant function and its discontinuities
  • Learn about limits and their applications in trigonometric contexts
  • Explore the unit circle and its role in defining trigonometric identities
  • Investigate the concept of removable discontinuities in functions
USEFUL FOR

Students and educators in mathematics, particularly those focusing on trigonometry and calculus, as well as anyone seeking to deepen their understanding of trigonometric identities and limits.

suzy1231
Messages
1
Reaction score
0
Your help will be greatly appreciated!

Thanks!1. The expression \(\sin\pi\) is equal to \(0\), while the expression $\frac{1}{\csc\pi}$ is undefined. Why is $\sin\theta=\frac{1}{\csc\theta}$ still an identity?

2. Prove $\cos(\theta + \frac{\pi}{2})= -\sin\theta$
 
Last edited by a moderator:
Mathematics news on Phys.org
suzy123 said:
2. Prove $\cos(\theta + \frac{\pi}{2})= -\sin\theta$

Use the addition formula together with the values from the unit circle $$\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$
 
Welcome to MHB, suzy123! :)

suzy123 said:
Your help will be greatly appreciated!

Thanks!1. The expression \(\sin\pi\) is equal to \(0\), while the expression $\frac{1}{\csc\pi}$ is undefined. Why is $\sin\theta=\frac{1}{\csc\theta}$ still an identity?

It's an identity when both are defined.
And if you treat $\csc\pi$ as $\infty$ it even holds there.
 
I like Serena said:
Welcome to MHB, suzy123! :)
It's an identity when both are defined.
And if you treat $\csc\pi$ as $\infty$ it even holds there.
An excellent point. Also, another way of looking at both is by considering limiting values:$$\lim_{x \to \pi}\sin x=0$$

$$\lim_{x \to \pi}\csc x = \lim_{x \to \pi}\frac{1}{\sin x}=\frac{1}{ \lim_{x \to \pi}\sin x } = \lim_{z \to 0 }\frac{1}{z} \to \frac{1}{0} \to \infty$$Similarly, you could use the composite angle formula I Like Serena gave above,

$$\sin (x \pm y)= \sin x \cos y \pm \cos x \sin y$$

and consider the limits$$\sin \pi = \lim_{x \to \pi}\sin x= \lim_{\epsilon \to 0}\sin (\pi \pm \epsilon) \to 0$$and$$\csc \pi = \lim_{x \to \pi}\csc x= \lim_{\epsilon \to 0} \frac{1}{\sin (\pi \pm \epsilon)} \to \infty$$
 
Prove that the function:

$f(\theta) = \sin\theta\csc\theta$

has removable discontinuities at $k\pi,\ k \in \Bbb Z$.

It is, by and large, problematic to simply say:

$\infty = \frac{1}{0}$ because such an assignment does not obey the algebraic rules of the real numbers (in particular, the cancellation law:

$ac = bc \implies a = b$ when $c \neq 0$

breaks down).

While it *is* possible to extend the real numbers in various ways to include the notion of infinity, it is usually preferable to phrase statements about infinity in ways that do not mention infinity itself such as:

instead of:

$\displaystyle \lim_{x \to a} f(x) = \infty$

we say:

for any $N > 0$, there is some $\delta > 0$ such that for all $0 < |x - a| < \delta$, we have $f(x) > N$.

This is a fancy way of saying: $f$ increases without bound near $a$. Note it does not mention infinity, nor does it say what (if any) value we should ascribe to $f(a)$.

As others have mentioned, the cosecant function is undefined at certain points. If one is asked to evaluate cosecant at such a point, one ought to politely refuse.
 
Deveno said:
If one is asked to evaluate cosecant at such a point, one ought to politely refuse.

Genius! :cool:
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K