MHB Trigonometric Inequality Challenge

AI Thread Summary
The discussion centers on proving the trigonometric inequality involving angles of triangle ABC. The inequality states that the sum of products of cosine and cotangent of half-angles is greater than or equal to a specific fraction of the sum of cotangents of the half-angles. David E. Narvaez from Panama presents a solution to this challenge, contributing valuable insights into the proof. The conversation highlights the mathematical reasoning and techniques used to establish the validity of the inequality. The thread emphasizes the importance of understanding trigonometric identities in solving such problems.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For any triangle $ABC$, prove that

$\cos \dfrac{A}{2} \cot \dfrac{A}{2}+\cos \dfrac{B}{2} \cot \dfrac{B}{2}+\cos \dfrac{C}{2} \cot \dfrac{C}{2} \ge \dfrac{\sqrt{3}}{2} \left( \cot \dfrac{A}{2}+\cot \dfrac{B}{2}+\cot \dfrac{C}{2} \right)$
 
Mathematics news on Phys.org
anemone said:
For any triangle $ABC$, prove that

$\cos \dfrac{A}{2} \cot \dfrac{A}{2}+\cos \dfrac{B}{2} \cot \dfrac{B}{2}+\cos \dfrac{C}{2} \cot \dfrac{C}{2} \ge \dfrac{\sqrt{3}}{2} \left( \cot \dfrac{A}{2}+\cot \dfrac{B}{2}+\cot \dfrac{C}{2} \right)$

Soluion by David E. Narvaez, Panama:

From Jensen's inequality we have that

$\tan\dfrac{A}{2}+\tan\dfrac{B}{2}+\tan\dfrac{C}{2}\ge\sqrt{3}$ and $\sin\dfrac{A}{2}\sin\dfrac{B}{2}+\sin\dfrac{B}{2}\sin\dfrac{C}{2}+\sin\dfrac{C}{2}\sin\dfrac{A}{2} \ge\dfrac{3}{4}$ thus

$\displaystyle \dfrac{3}{2}\left( \sum_{cyc} \tan \dfrac{A}{2} \right)\left( \sum_{cyc} \sin \dfrac{B}{2} \sin \dfrac{C}{2} \right) \ge \dfrac{\sqrt{3}}{2}$

Let us assume, without loss of generality, that $A\ge B \ge C$. Then $\left( \tan \dfrac{A}{2} +\tan \dfrac{B}{2} \right) \ge \left( \tan \dfrac{A}{2} +\tan \dfrac{C}{2} \right) \ge \left( \tan \dfrac{B}{2} +\tan \dfrac{C}{2} \right)$ and

$\sin \dfrac{A}{2}\sin \dfrac{B}{2} \ge \sin \dfrac{C}{2} \sin \dfrac{A}{2} \ge \sin\dfrac{B}{2}\sin \dfrac{C}{2}$ and by Chebychev's inequality, we get

$\displaystyle \sum_{cyc} \left(\tan \dfrac{B}{2}+\tan \dfrac{C}{2} \right)\sin \dfrac{B}{2} \sin \dfrac{C}{2} \ge \dfrac{1}{3} \left(\sum_{cyc} \left(\tan \dfrac{B}{2}+\tan \dfrac{C}{2} \right) \right) \left( \sum_{cyc} \sin \dfrac{B}{2} \sin \dfrac{C}{2} \right) \ge \dfrac{\sqrt{3}}{2}$

but

$\begin{align*}

\left(\tan \dfrac{B}{2}+\tan \dfrac{C}{2} \right)\sin \dfrac{B}{2} \sin \dfrac{C}{2}&=\left(\dfrac{\sin \dfrac{B}{2} \cos \dfrac{C}{2}+\sin \dfrac{C}{2} \cos \dfrac{B}{2}}{\cos \dfrac{B}{2}\cos \dfrac{C}{2}} \right)\sin \dfrac{B}{2} \sin \dfrac{C}{2}\\&=\sin \dfrac{B+C}{2}\tan\dfrac{B}{2}\tan\dfrac{C}{2} \\&= \cos \dfrac{A}{2} \tan \dfrac{B}{2} \tan \dfrac{C}{2}\end{align*}$

and replacing this and similar identities for every term in the left hand side of our last inequality we have

$\displaystyle \sum_{cyc} \cos \dfrac{A}{2}\tan \dfrac{B}{2}\tan \dfrac{C}{2} \ge \dfrac{\sqrt{3}}{2}$

Multiplying this inequality by $\cot \dfrac{A}{2}\cot \dfrac{B}{2}\cot\dfrac{C}{2}=\cot \dfrac{A}{2}+\cot \dfrac{B}{2}+\cot\dfrac{C}{2}$ we get

$\cos \dfrac{A}{2} \cot \dfrac{A}{2}+\cos \dfrac{B}{2} \cot \dfrac{B}{2}+\cos \dfrac{C}{2} \cot \dfrac{C}{2} \ge \dfrac{\sqrt{3}}{2} \left( \cot \dfrac{A}{2}+\cot \dfrac{B}{2}+\cot \dfrac{C}{2} \right)$ and we are done.
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top