MHB Trigonometric Inequality Challenge

Click For Summary
The discussion centers on proving the trigonometric inequality involving angles of triangle ABC. The inequality states that the sum of products of cosine and cotangent of half-angles is greater than or equal to a specific fraction of the sum of cotangents of the half-angles. David E. Narvaez from Panama presents a solution to this challenge, contributing valuable insights into the proof. The conversation highlights the mathematical reasoning and techniques used to establish the validity of the inequality. The thread emphasizes the importance of understanding trigonometric identities in solving such problems.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For any triangle $ABC$, prove that

$\cos \dfrac{A}{2} \cot \dfrac{A}{2}+\cos \dfrac{B}{2} \cot \dfrac{B}{2}+\cos \dfrac{C}{2} \cot \dfrac{C}{2} \ge \dfrac{\sqrt{3}}{2} \left( \cot \dfrac{A}{2}+\cot \dfrac{B}{2}+\cot \dfrac{C}{2} \right)$
 
Mathematics news on Phys.org
anemone said:
For any triangle $ABC$, prove that

$\cos \dfrac{A}{2} \cot \dfrac{A}{2}+\cos \dfrac{B}{2} \cot \dfrac{B}{2}+\cos \dfrac{C}{2} \cot \dfrac{C}{2} \ge \dfrac{\sqrt{3}}{2} \left( \cot \dfrac{A}{2}+\cot \dfrac{B}{2}+\cot \dfrac{C}{2} \right)$

Soluion by David E. Narvaez, Panama:

From Jensen's inequality we have that

$\tan\dfrac{A}{2}+\tan\dfrac{B}{2}+\tan\dfrac{C}{2}\ge\sqrt{3}$ and $\sin\dfrac{A}{2}\sin\dfrac{B}{2}+\sin\dfrac{B}{2}\sin\dfrac{C}{2}+\sin\dfrac{C}{2}\sin\dfrac{A}{2} \ge\dfrac{3}{4}$ thus

$\displaystyle \dfrac{3}{2}\left( \sum_{cyc} \tan \dfrac{A}{2} \right)\left( \sum_{cyc} \sin \dfrac{B}{2} \sin \dfrac{C}{2} \right) \ge \dfrac{\sqrt{3}}{2}$

Let us assume, without loss of generality, that $A\ge B \ge C$. Then $\left( \tan \dfrac{A}{2} +\tan \dfrac{B}{2} \right) \ge \left( \tan \dfrac{A}{2} +\tan \dfrac{C}{2} \right) \ge \left( \tan \dfrac{B}{2} +\tan \dfrac{C}{2} \right)$ and

$\sin \dfrac{A}{2}\sin \dfrac{B}{2} \ge \sin \dfrac{C}{2} \sin \dfrac{A}{2} \ge \sin\dfrac{B}{2}\sin \dfrac{C}{2}$ and by Chebychev's inequality, we get

$\displaystyle \sum_{cyc} \left(\tan \dfrac{B}{2}+\tan \dfrac{C}{2} \right)\sin \dfrac{B}{2} \sin \dfrac{C}{2} \ge \dfrac{1}{3} \left(\sum_{cyc} \left(\tan \dfrac{B}{2}+\tan \dfrac{C}{2} \right) \right) \left( \sum_{cyc} \sin \dfrac{B}{2} \sin \dfrac{C}{2} \right) \ge \dfrac{\sqrt{3}}{2}$

but

$\begin{align*}

\left(\tan \dfrac{B}{2}+\tan \dfrac{C}{2} \right)\sin \dfrac{B}{2} \sin \dfrac{C}{2}&=\left(\dfrac{\sin \dfrac{B}{2} \cos \dfrac{C}{2}+\sin \dfrac{C}{2} \cos \dfrac{B}{2}}{\cos \dfrac{B}{2}\cos \dfrac{C}{2}} \right)\sin \dfrac{B}{2} \sin \dfrac{C}{2}\\&=\sin \dfrac{B+C}{2}\tan\dfrac{B}{2}\tan\dfrac{C}{2} \\&= \cos \dfrac{A}{2} \tan \dfrac{B}{2} \tan \dfrac{C}{2}\end{align*}$

and replacing this and similar identities for every term in the left hand side of our last inequality we have

$\displaystyle \sum_{cyc} \cos \dfrac{A}{2}\tan \dfrac{B}{2}\tan \dfrac{C}{2} \ge \dfrac{\sqrt{3}}{2}$

Multiplying this inequality by $\cot \dfrac{A}{2}\cot \dfrac{B}{2}\cot\dfrac{C}{2}=\cot \dfrac{A}{2}+\cot \dfrac{B}{2}+\cot\dfrac{C}{2}$ we get

$\cos \dfrac{A}{2} \cot \dfrac{A}{2}+\cos \dfrac{B}{2} \cot \dfrac{B}{2}+\cos \dfrac{C}{2} \cot \dfrac{C}{2} \ge \dfrac{\sqrt{3}}{2} \left( \cot \dfrac{A}{2}+\cot \dfrac{B}{2}+\cot \dfrac{C}{2} \right)$ and we are done.
 
Last edited:
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
997
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K