MHB Trigonometric Inequality Challenge

Click For Summary
The discussion centers on proving the trigonometric inequality involving angles of triangle ABC. The inequality states that the sum of products of cosine and cotangent of half-angles is greater than or equal to a specific fraction of the sum of cotangents of the half-angles. David E. Narvaez from Panama presents a solution to this challenge, contributing valuable insights into the proof. The conversation highlights the mathematical reasoning and techniques used to establish the validity of the inequality. The thread emphasizes the importance of understanding trigonometric identities in solving such problems.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For any triangle $ABC$, prove that

$\cos \dfrac{A}{2} \cot \dfrac{A}{2}+\cos \dfrac{B}{2} \cot \dfrac{B}{2}+\cos \dfrac{C}{2} \cot \dfrac{C}{2} \ge \dfrac{\sqrt{3}}{2} \left( \cot \dfrac{A}{2}+\cot \dfrac{B}{2}+\cot \dfrac{C}{2} \right)$
 
Mathematics news on Phys.org
anemone said:
For any triangle $ABC$, prove that

$\cos \dfrac{A}{2} \cot \dfrac{A}{2}+\cos \dfrac{B}{2} \cot \dfrac{B}{2}+\cos \dfrac{C}{2} \cot \dfrac{C}{2} \ge \dfrac{\sqrt{3}}{2} \left( \cot \dfrac{A}{2}+\cot \dfrac{B}{2}+\cot \dfrac{C}{2} \right)$

Soluion by David E. Narvaez, Panama:

From Jensen's inequality we have that

$\tan\dfrac{A}{2}+\tan\dfrac{B}{2}+\tan\dfrac{C}{2}\ge\sqrt{3}$ and $\sin\dfrac{A}{2}\sin\dfrac{B}{2}+\sin\dfrac{B}{2}\sin\dfrac{C}{2}+\sin\dfrac{C}{2}\sin\dfrac{A}{2} \ge\dfrac{3}{4}$ thus

$\displaystyle \dfrac{3}{2}\left( \sum_{cyc} \tan \dfrac{A}{2} \right)\left( \sum_{cyc} \sin \dfrac{B}{2} \sin \dfrac{C}{2} \right) \ge \dfrac{\sqrt{3}}{2}$

Let us assume, without loss of generality, that $A\ge B \ge C$. Then $\left( \tan \dfrac{A}{2} +\tan \dfrac{B}{2} \right) \ge \left( \tan \dfrac{A}{2} +\tan \dfrac{C}{2} \right) \ge \left( \tan \dfrac{B}{2} +\tan \dfrac{C}{2} \right)$ and

$\sin \dfrac{A}{2}\sin \dfrac{B}{2} \ge \sin \dfrac{C}{2} \sin \dfrac{A}{2} \ge \sin\dfrac{B}{2}\sin \dfrac{C}{2}$ and by Chebychev's inequality, we get

$\displaystyle \sum_{cyc} \left(\tan \dfrac{B}{2}+\tan \dfrac{C}{2} \right)\sin \dfrac{B}{2} \sin \dfrac{C}{2} \ge \dfrac{1}{3} \left(\sum_{cyc} \left(\tan \dfrac{B}{2}+\tan \dfrac{C}{2} \right) \right) \left( \sum_{cyc} \sin \dfrac{B}{2} \sin \dfrac{C}{2} \right) \ge \dfrac{\sqrt{3}}{2}$

but

$\begin{align*}

\left(\tan \dfrac{B}{2}+\tan \dfrac{C}{2} \right)\sin \dfrac{B}{2} \sin \dfrac{C}{2}&=\left(\dfrac{\sin \dfrac{B}{2} \cos \dfrac{C}{2}+\sin \dfrac{C}{2} \cos \dfrac{B}{2}}{\cos \dfrac{B}{2}\cos \dfrac{C}{2}} \right)\sin \dfrac{B}{2} \sin \dfrac{C}{2}\\&=\sin \dfrac{B+C}{2}\tan\dfrac{B}{2}\tan\dfrac{C}{2} \\&= \cos \dfrac{A}{2} \tan \dfrac{B}{2} \tan \dfrac{C}{2}\end{align*}$

and replacing this and similar identities for every term in the left hand side of our last inequality we have

$\displaystyle \sum_{cyc} \cos \dfrac{A}{2}\tan \dfrac{B}{2}\tan \dfrac{C}{2} \ge \dfrac{\sqrt{3}}{2}$

Multiplying this inequality by $\cot \dfrac{A}{2}\cot \dfrac{B}{2}\cot\dfrac{C}{2}=\cot \dfrac{A}{2}+\cot \dfrac{B}{2}+\cot\dfrac{C}{2}$ we get

$\cos \dfrac{A}{2} \cot \dfrac{A}{2}+\cos \dfrac{B}{2} \cot \dfrac{B}{2}+\cos \dfrac{C}{2} \cot \dfrac{C}{2} \ge \dfrac{\sqrt{3}}{2} \left( \cot \dfrac{A}{2}+\cot \dfrac{B}{2}+\cot \dfrac{C}{2} \right)$ and we are done.
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K