MHB Trigonometric inequality challenge

Albert1
Messages
1,221
Reaction score
0
Acute triangle ABC
Prove :Sin A +Sin B +Sin C>Cos A + Cos B + Cos C
 
Mathematics news on Phys.org
My solution:

Consider the objective function:

$$F(A,B,C)=\sin(A)+\sin(B)+\sin(C)-\cos(A)-\cos(B)-\cos(C)$$

Subject to the constraint:

$$g(A,B,C)=A+B+C-\pi=0$$

Because of cyclic symmetry, we know the critical point occurs for:

$$A=B=C=\frac{\pi}{3}$$

We find:

$$f\left(\frac{\pi}{3},\frac{\pi}{3},\frac{\pi}{3}\right)=\frac{3}{2}(\sqrt{3}-1)\approx1.098$$

and:

$$f\left(\frac{\pi}{3},\frac{5\pi}{12},\frac{\pi}{4}\right)=\frac{1}{2}(\sqrt{3}+\sqrt{2}-1)\approx1.073$$

Now, if we let one of the angles be a right angle, then the other two will be complementary, and we will have:

$$f=1$$

Therefore, for an acute triangle, we have:

$$1<f\le\frac{3}{2}(\sqrt{3}-1)$$

And from this we conclude the given inequality is true.
 
Albert said:
Acute triangle ABC
Prove :Sin A +Sin B +Sin C>Cos A + Cos B + Cos C
hint:
$\angle A+\angle B>90^o---(1)$
$\angle B+\angle C>90^o---(2)$
$\angle C+\angle A>90^o---(3)$
$why?$
 
Suggested solution:
\[A+B+C = 180^{\circ} \: \: \: \wedge \: \: \: C < 90^{\circ}\Rightarrow A+B > 90^{\circ}\]

Since all three angles (in an acute triangle) are less than $90^{\circ}$, we also have:\[A+C > 90^{\circ},\: \: \: B+C > 90^{\circ}\]Using the fact, that $ \sin X $ is a monotonically increasing function for $0^{\circ} \le X \le 90^{\circ}$, we get:

\[A + B > 90^{\circ} \Rightarrow \sin A>\sin(90^{\circ}-B)= \cos B\]

Similarly:

\[B+C > 90^{\circ} \Rightarrow \sin B>\sin(90^{\circ}-C)= \cos C\]

\[A+C > 90^{\circ} \Rightarrow \sin C>\sin(90^{\circ}-A)= \cos A\]

Adding the three inequalities yields the result:

\[\sin A+\sin B+\sin C > \cos A+\cos B+\cos C\]
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top