MHB Trigonometric inequality challenge

Click For Summary
In an acute triangle ABC, the inequality Sin A + Sin B + Sin C > Cos A + Cos B + Cos C is proposed for proof. The discussion focuses on finding a valid mathematical approach to demonstrate this inequality holds true. Participants suggest various strategies and hints for tackling the proof, emphasizing the properties of sine and cosine functions in acute angles. The conversation highlights the significance of understanding trigonometric identities and relationships within triangles. Ultimately, the challenge encourages deeper exploration of trigonometric inequalities in geometry.
Albert1
Messages
1,221
Reaction score
0
Acute triangle ABC
Prove :Sin A +Sin B +Sin C>Cos A + Cos B + Cos C
 
Mathematics news on Phys.org
My solution:

Consider the objective function:

$$F(A,B,C)=\sin(A)+\sin(B)+\sin(C)-\cos(A)-\cos(B)-\cos(C)$$

Subject to the constraint:

$$g(A,B,C)=A+B+C-\pi=0$$

Because of cyclic symmetry, we know the critical point occurs for:

$$A=B=C=\frac{\pi}{3}$$

We find:

$$f\left(\frac{\pi}{3},\frac{\pi}{3},\frac{\pi}{3}\right)=\frac{3}{2}(\sqrt{3}-1)\approx1.098$$

and:

$$f\left(\frac{\pi}{3},\frac{5\pi}{12},\frac{\pi}{4}\right)=\frac{1}{2}(\sqrt{3}+\sqrt{2}-1)\approx1.073$$

Now, if we let one of the angles be a right angle, then the other two will be complementary, and we will have:

$$f=1$$

Therefore, for an acute triangle, we have:

$$1<f\le\frac{3}{2}(\sqrt{3}-1)$$

And from this we conclude the given inequality is true.
 
Albert said:
Acute triangle ABC
Prove :Sin A +Sin B +Sin C>Cos A + Cos B + Cos C
hint:
$\angle A+\angle B>90^o---(1)$
$\angle B+\angle C>90^o---(2)$
$\angle C+\angle A>90^o---(3)$
$why?$
 
Suggested solution:
\[A+B+C = 180^{\circ} \: \: \: \wedge \: \: \: C < 90^{\circ}\Rightarrow A+B > 90^{\circ}\]

Since all three angles (in an acute triangle) are less than $90^{\circ}$, we also have:\[A+C > 90^{\circ},\: \: \: B+C > 90^{\circ}\]Using the fact, that $ \sin X $ is a monotonically increasing function for $0^{\circ} \le X \le 90^{\circ}$, we get:

\[A + B > 90^{\circ} \Rightarrow \sin A>\sin(90^{\circ}-B)= \cos B\]

Similarly:

\[B+C > 90^{\circ} \Rightarrow \sin B>\sin(90^{\circ}-C)= \cos C\]

\[A+C > 90^{\circ} \Rightarrow \sin C>\sin(90^{\circ}-A)= \cos A\]

Adding the three inequalities yields the result:

\[\sin A+\sin B+\sin C > \cos A+\cos B+\cos C\]
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
962