Trigonometric inequality with pi

Click For Summary
SUMMARY

The discussion centers on solving the trigonometric inequality $$ \sin{(\pi x)}>\cos{(\pi \sqrt{x})} $$, with participants exploring various approaches. The inequality is analyzed under the assumption that both angles are in the first and second quadrants, leading to the conclusion that $$ \frac{1}{2} (2-\sqrt{3}) < x \leq \frac{1}{4} $$ and $$ \frac{1}{2} \leq x \leq 1 $$ are potential solution intervals. The periodicity of the sine function is also noted as a factor that may influence the overall solution set.

PREREQUISITES
  • Understanding of trigonometric functions, specifically sine and cosine.
  • Knowledge of trigonometric inequalities and their properties.
  • Familiarity with the concept of quadrants in the unit circle.
  • Basic algebraic manipulation, including handling square roots and inequalities.
NEXT STEPS
  • Explore the periodic properties of sine and cosine functions in trigonometric inequalities.
  • Study the implications of angle quadrants on trigonometric function values.
  • Learn about solving inequalities involving square roots and trigonometric functions.
  • Investigate advanced techniques for solving trigonometric inequalities, such as graphical methods.
USEFUL FOR

Mathematicians, students studying trigonometry, and anyone interested in solving complex trigonometric inequalities.

karseme
Messages
13
Reaction score
0
$$ \sin{(\pi x)}>\cos{(\pi \sqrt{x})} $$

I don't know how to solve this. I would really appreciate some help.
I tried to do something, but didn't get anything.

If I move cos to the left side, I can't apply formulas for sum. Since arguments of sin and cos have $$ \pi $$, I think there is no way I can somehow make it simpler by using addition formulas. If I could somehow get rid of that square root, but how?! I know that $$ x=(\sqrt{x})^2 $$, but what's use of that when I don't see how to get rid of that power of 2. I tried squaring everything and doing something, but I didn't get anything from that. I don't know how to proceed. I don't see there are any formulas which I could use to make this simpler.

Must solve this somehow, would appreciate your help.
 
Mathematics news on Phys.org
karseme said:
$$ \sin{(\pi x)}>\cos{(\pi \sqrt{x})} $$

I don't know how to solve this. I would really appreciate some help.
I tried to do something, but didn't get anything.

If I move cos to the left side, I can't apply formulas for sum. Since arguments of sin and cos have $$ \pi $$, I think there is no way I can somehow make it simpler by using addition formulas. If I could somehow get rid of that square root, but how?! I know that $$ x=(\sqrt{x})^2 $$, but what's use of that when I don't see how to get rid of that power of 2. I tried squaring everything and doing something, but I didn't get anything from that. I don't know how to proceed. I don't see there are any formulas which I could use to make this simpler.

Must solve this somehow, would appreciate your help.

Hi karseme! ;)

Suppose we assume that both angles are in the first quadrant.
That is, $0\le \pi x \le \frac\pi 2$ and $0\le \pi \sqrt x \le \frac\pi 2$.
So $0\le x \le \frac 14$.

Then:
$$\sin{(\pi x)}>\sin{(\frac\pi 2 - \pi \sqrt{x})}$$
Since the sine is increasing in the first quadrant, we get:
$$\pi x>\frac\pi 2 - \pi \sqrt{x}$$
It follows that:
$$\sqrt x > \frac 12 (\sqrt 3 - 1)$$
And since $\sqrt{}$ is increasing, we find:
$$\frac 12 (2-\sqrt 3) < x \le \frac 14$$

We can continue with considering cases if the angles are in other quadrants.
 
Thank you very much. :) It was very helpful.
 
So, if we assume that both angles are in the second quadrant, then the following must be true:
$$ \dfrac{\pi}{2} \leq \pi x \leq \pi \qquad \land \qquad \dfrac{\pi}{2} \leq \pi \sqrt{x} \leq \pi \, \implies \dfrac{1}{2} \leq x \leq 1 $$

Since $$ \pi \sqrt{x} $$ is in the second quadrant we have:

$$ cos{(\pi \sqrt{x})}=-\cos{(\pi-\pi \sqrt{x})}=-\sin{(\dfrac{\pi}{2} + \pi - \pi \sqrt{x})}=-\sin{(\dfrac{3\pi}{2}- \pi \sqrt{x})}=\sin{(\pi \sqrt{x}-\dfrac{3\pi}{2})} $$

So,

$$ \sin{(\pi x)} > \sin{(\pi \sqrt{x}-\dfrac{3\pi}{2})} $$

Since sine is decreasing in the second quadrant then we have:

$$ \pi x < \pi \sqrt{x}-\dfrac{3\pi}{2} $$

This quadratic inequality does not have solution(for t=\sqrt{x}).

Is this good? But, when I solve the given inequality for $$ \dfrac{1}{2} \leq x \leq 1 $$ it is true.

So, those are the solutions...is it any good?

But what about periodicity of sine? then those can't be the only solutions?
 
karseme said:
So, if we assume that both angles are in the second quadrant, then the following must be true:
$$ \dfrac{\pi}{2} \leq \pi x \leq \pi \qquad \land \qquad \dfrac{\pi}{2} \leq \pi \sqrt{x} \leq \pi \, \implies \dfrac{1}{2} \leq x \leq 1 $$

Since $$ \pi \sqrt{x} $$ is in the second quadrant we have:

$$ cos{(\pi \sqrt{x})}=-\cos{(\pi-\pi \sqrt{x})}=-\sin{(\dfrac{\pi}{2} + \pi - \pi \sqrt{x})}=-\sin{(\dfrac{3\pi}{2}- \pi \sqrt{x})}=\sin{(\pi \sqrt{x}-\dfrac{3\pi}{2})} $$

So,

$$ \sin{(\pi x)} > \sin{(\pi \sqrt{x}-\dfrac{3\pi}{2})} $$

Since sine is decreasing in the second quadrant then we have:

$$ \pi x < \pi \sqrt{x}-\dfrac{3\pi}{2} $$

This quadratic inequality does not have solution(for t=\sqrt{x}).

Is this good? But, when I solve the given inequality for $$ \dfrac{1}{2} \leq x \leq 1 $$ it is true.

So, those are the solutions...is it any good?

But what about periodicity of sine? then those can't be the only solutions?

I'm afraid we have to consider $\pi x$ to be in any quadrant and $\pi\sqrt x$ to be in the same or any other quadrant.
Furthermore, we have to consider that they may have an additional $2k\pi$ added to them that can be different for each of them. (Sweating)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K