Trigonometric inequality with pi

Click For Summary

Discussion Overview

The discussion revolves around the inequality $$ \sin{(\pi x)}>\cos{(\pi \sqrt{x})} $$ and explores various approaches to solving it. Participants examine the implications of the angles being in different quadrants and the resulting inequalities, considering both theoretical and mathematical reasoning.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants express uncertainty about how to manipulate the inequality, particularly regarding the presence of $$ \pi $$ and the square root in the arguments of sine and cosine.
  • One participant proposes assuming both angles are in the first quadrant, leading to a derived inequality involving $$ x $$.
  • Another participant explores the case where both angles are in the second quadrant, deriving a different set of inequalities and questioning the completeness of the solutions due to periodicity of sine.
  • Concerns are raised about the necessity of considering angles in different quadrants and the potential for additional periodic solutions.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the solutions to the inequality. Multiple competing views are presented regarding the implications of quadrant assumptions and the periodic nature of the sine function.

Contextual Notes

Participants highlight limitations in their reasoning, including the dependence on quadrant assumptions and the unresolved nature of the periodicity of sine, which may affect the completeness of the solutions.

karseme
Messages
13
Reaction score
0
$$ \sin{(\pi x)}>\cos{(\pi \sqrt{x})} $$

I don't know how to solve this. I would really appreciate some help.
I tried to do something, but didn't get anything.

If I move cos to the left side, I can't apply formulas for sum. Since arguments of sin and cos have $$ \pi $$, I think there is no way I can somehow make it simpler by using addition formulas. If I could somehow get rid of that square root, but how?! I know that $$ x=(\sqrt{x})^2 $$, but what's use of that when I don't see how to get rid of that power of 2. I tried squaring everything and doing something, but I didn't get anything from that. I don't know how to proceed. I don't see there are any formulas which I could use to make this simpler.

Must solve this somehow, would appreciate your help.
 
Mathematics news on Phys.org
karseme said:
$$ \sin{(\pi x)}>\cos{(\pi \sqrt{x})} $$

I don't know how to solve this. I would really appreciate some help.
I tried to do something, but didn't get anything.

If I move cos to the left side, I can't apply formulas for sum. Since arguments of sin and cos have $$ \pi $$, I think there is no way I can somehow make it simpler by using addition formulas. If I could somehow get rid of that square root, but how?! I know that $$ x=(\sqrt{x})^2 $$, but what's use of that when I don't see how to get rid of that power of 2. I tried squaring everything and doing something, but I didn't get anything from that. I don't know how to proceed. I don't see there are any formulas which I could use to make this simpler.

Must solve this somehow, would appreciate your help.

Hi karseme! ;)

Suppose we assume that both angles are in the first quadrant.
That is, $0\le \pi x \le \frac\pi 2$ and $0\le \pi \sqrt x \le \frac\pi 2$.
So $0\le x \le \frac 14$.

Then:
$$\sin{(\pi x)}>\sin{(\frac\pi 2 - \pi \sqrt{x})}$$
Since the sine is increasing in the first quadrant, we get:
$$\pi x>\frac\pi 2 - \pi \sqrt{x}$$
It follows that:
$$\sqrt x > \frac 12 (\sqrt 3 - 1)$$
And since $\sqrt{}$ is increasing, we find:
$$\frac 12 (2-\sqrt 3) < x \le \frac 14$$

We can continue with considering cases if the angles are in other quadrants.
 
Thank you very much. :) It was very helpful.
 
So, if we assume that both angles are in the second quadrant, then the following must be true:
$$ \dfrac{\pi}{2} \leq \pi x \leq \pi \qquad \land \qquad \dfrac{\pi}{2} \leq \pi \sqrt{x} \leq \pi \, \implies \dfrac{1}{2} \leq x \leq 1 $$

Since $$ \pi \sqrt{x} $$ is in the second quadrant we have:

$$ cos{(\pi \sqrt{x})}=-\cos{(\pi-\pi \sqrt{x})}=-\sin{(\dfrac{\pi}{2} + \pi - \pi \sqrt{x})}=-\sin{(\dfrac{3\pi}{2}- \pi \sqrt{x})}=\sin{(\pi \sqrt{x}-\dfrac{3\pi}{2})} $$

So,

$$ \sin{(\pi x)} > \sin{(\pi \sqrt{x}-\dfrac{3\pi}{2})} $$

Since sine is decreasing in the second quadrant then we have:

$$ \pi x < \pi \sqrt{x}-\dfrac{3\pi}{2} $$

This quadratic inequality does not have solution(for t=\sqrt{x}).

Is this good? But, when I solve the given inequality for $$ \dfrac{1}{2} \leq x \leq 1 $$ it is true.

So, those are the solutions...is it any good?

But what about periodicity of sine? then those can't be the only solutions?
 
karseme said:
So, if we assume that both angles are in the second quadrant, then the following must be true:
$$ \dfrac{\pi}{2} \leq \pi x \leq \pi \qquad \land \qquad \dfrac{\pi}{2} \leq \pi \sqrt{x} \leq \pi \, \implies \dfrac{1}{2} \leq x \leq 1 $$

Since $$ \pi \sqrt{x} $$ is in the second quadrant we have:

$$ cos{(\pi \sqrt{x})}=-\cos{(\pi-\pi \sqrt{x})}=-\sin{(\dfrac{\pi}{2} + \pi - \pi \sqrt{x})}=-\sin{(\dfrac{3\pi}{2}- \pi \sqrt{x})}=\sin{(\pi \sqrt{x}-\dfrac{3\pi}{2})} $$

So,

$$ \sin{(\pi x)} > \sin{(\pi \sqrt{x}-\dfrac{3\pi}{2})} $$

Since sine is decreasing in the second quadrant then we have:

$$ \pi x < \pi \sqrt{x}-\dfrac{3\pi}{2} $$

This quadratic inequality does not have solution(for t=\sqrt{x}).

Is this good? But, when I solve the given inequality for $$ \dfrac{1}{2} \leq x \leq 1 $$ it is true.

So, those are the solutions...is it any good?

But what about periodicity of sine? then those can't be the only solutions?

I'm afraid we have to consider $\pi x$ to be in any quadrant and $\pi\sqrt x$ to be in the same or any other quadrant.
Furthermore, we have to consider that they may have an additional $2k\pi$ added to them that can be different for each of them. (Sweating)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K