MHB Trigonometric of tangent and sine functions

Click For Summary
The discussion focuses on simplifying the expression involving tangent and sine functions: \(\left(\tan \dfrac{2\pi}{7}-4\sin \dfrac{\pi}{7}\right)\left(\tan \dfrac{3\pi}{7}-4\sin \dfrac{2\pi}{7}\right)\left(\tan \dfrac{6\pi}{7}-4\sin \dfrac{3\pi}{7}\right). A user named Dan shares a numerical approximation of the result, approximately -8.7083, and asks if they are close to the correct answer. The conversation revolves around verifying this simplification and discussing the properties of the trigonometric functions involved. The overall goal is to confirm the accuracy of the numerical result and the simplification process.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Simplify $\left(\tan \dfrac{2\pi}{7}-4\sin \dfrac{\pi}{7}\right)\left(\tan \dfrac{3\pi}{7}-4\sin \dfrac{2\pi}{7}\right)\left(\tan \dfrac{6\pi}{7}-4\sin \dfrac{3\pi}{7}\right)$.
 
Mathematics news on Phys.org
I got about -8.7083121069873265814843145114959219999438416220762493062309701968483080116471438626714199913273209202440106287205185869613863265722279384849632901398226721432702744787955199077781973792055631357781755415456733331388124469116498805756011983384506433640247288593850820089590928253650738597742412754348439402301589178427587352708579714081417809559865987679591010005488147679340458470850085945675037017144904042287279335497160556553452963874716319026939725908000014025345344112227718546669183167834689374961602264946845122520973969612465747159538537772604016219227651262298967156522926816165972425283143645081705710618441263404832174787619393871431981552587401078586609898568054592224581007986448669288148444215128498186229896741206349315952054866256984612864167199842472866575465952447085845790874114020207148838309575537421068097653460699858226519033408205869208586639796284569971790165922274544500088737294024496093237634962135759638417523292668843921768916664652250085254395250841082981914897137469833874653795905403859395226103590166597307639852476273392879083873723649605334228340639098097814440444549718831560592044450598723461692804007733588937741590648889021935199757480637837660523461803937847078950866107512314217003731198786042996011750451712135884514444878781114357178952544416819768594073353584110967734337432198244086867356343864416552649586451520413569547092694404444532795994994438271445333716459116502792251091594744077024600155160457563503684373664211499889132746530159707148096441069149624420565803877227318131627873671715105932608979648146278844613590157353436714676787933231516958800501704045205913556958442328349254532043183475963879427381686337157339601066369199608533673687386762949721994907024739645071023865884051877078161059364899178505753714909479228031574944638783941268199880771092085126999780242627307210910698666574484989827761671955524479251591513340499083326461726929118742316319408632872884749801756534634165971359295929387392681708974873301182019170001880197471302122860499952496977...

Am I close?

-Dan
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K