MHB Trigonometric Product Challenge sin(π/m)sin(2π/m)sin(3π/m)⋯sin(m−1)π/m=m/2^(m−1)

Click For Summary
The discussion centers on proving the identity involving the product of sine functions for integer values of m starting from 2. The identity states that the product of sines, sin(π/m)sin(2π/m)...sin((m-1)π/m), equals m/2^(m-1). Participants suggest using the roots of the equation z^m=1 as a method for the proof. This approach leverages complex numbers and properties of roots of unity to establish the relationship. The challenge invites deeper exploration into trigonometric identities and their proofs.
Greg
Gold Member
MHB
Messages
1,377
Reaction score
0
Prove that for $m=2,3,...$

$$\sin\frac{\pi}{m}\sin\frac{2\pi}{m}\sin\frac{3\pi}{m}\cdots\,\sin\frac{(m-1)\pi}{m}=\frac{m}{2^{m-1}}$$
 
Mathematics news on Phys.org
Hint:

[sp]Consider the roots of $z^m=1$[/sp]
 
greg1313 said:
Hint:

[sp]Consider the roots of $z^m=1$[/sp]

we know $\sin \, nt = \frac{1}{2i}(e^{int} - e^{-int})=\frac{1}{2i}e^{-int}(e^{2int}-1) $
lettiing $t=\frac{\pi}{m}$ we have taking the product from n = to m-1 we get
$\prod_{n=1}^{m-1} sin \frac{n \pi}{m}= (\frac{1}{2i})^{m-1} e^{-i\sum_{n=1}^{m-1}\frac{n\pi}{m}}\prod_{n=1}^{m-1} (e^{2\frac{in\pi}{m}}-1) \cdots(1) $

Now $ e^{-i\sum_{n=1}^{m-1}\frac{n\pi}{m}} = e^\frac{-(m-1)(m)\pi\,i }{2m}= e^\frac{-(m-1)\pi\,i }{2}= (e^\frac{-\pi\,i}{2})^{(m-1)}= (-i)^{m-1}\cdots(2)$

from (1) and (2)
$\prod_{n=1}^{m-1} sin \frac{n \pi}{m}= (\frac{1}{2i})^{m-1} (-i)^{m-1}= (\frac{-1}{2})^{m-1} \prod_{n=1}^{m-1} (e^{2\frac{in\pi}{m}}-1)$
$= (\frac{1}{2})^{m-1} \prod_{n=1}^{m-1} (1- e^{2\frac{in\pi}{m}}) = (\frac{1}{2})^{m-1} \prod_{n=1}^{m-1} (1- w^n) \dots (3)$ where w is $m^{th}$ root of 1

now because w is $n^{th}$ root of 1 we have

$x^n-1 = \prod_{n=0}^{m-1} (x- w^n) = (x-1) \prod_{n=1}^{m-1} (x- w^n)\cdots(4)$
further $x^n-1 = (x-1) \sum_{n=0}^{m-1} x^n\cdots(5)$
so we have from (4) and (5)
$\prod_{n=1}^{m-1} (x- w^n) = \sum_{n=0}^{m-1} x^n$
putting x = 1 we get
$\prod_{n=1}^{m-1} (1- w^n) = \sum_{n=0}^{m-1} 1^n= m $

from (3) and above we get
$\prod_{n=1}^{m-1} \sin \frac{n \pi}{m} = \frac{m}{2^{m-1}}$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K