MHB Trigonometric Product Challenge sin(π/m)sin(2π/m)sin(3π/m)⋯sin(m−1)π/m=m/2^(m−1)

Click For Summary
The discussion centers on proving the identity involving the product of sine functions for integer values of m starting from 2. The identity states that the product of sines, sin(π/m)sin(2π/m)...sin((m-1)π/m), equals m/2^(m-1). Participants suggest using the roots of the equation z^m=1 as a method for the proof. This approach leverages complex numbers and properties of roots of unity to establish the relationship. The challenge invites deeper exploration into trigonometric identities and their proofs.
Greg
Gold Member
MHB
Messages
1,377
Reaction score
0
Prove that for $m=2,3,...$

$$\sin\frac{\pi}{m}\sin\frac{2\pi}{m}\sin\frac{3\pi}{m}\cdots\,\sin\frac{(m-1)\pi}{m}=\frac{m}{2^{m-1}}$$
 
Mathematics news on Phys.org
Hint:

[sp]Consider the roots of $z^m=1$[/sp]
 
greg1313 said:
Hint:

[sp]Consider the roots of $z^m=1$[/sp]

we know $\sin \, nt = \frac{1}{2i}(e^{int} - e^{-int})=\frac{1}{2i}e^{-int}(e^{2int}-1) $
lettiing $t=\frac{\pi}{m}$ we have taking the product from n = to m-1 we get
$\prod_{n=1}^{m-1} sin \frac{n \pi}{m}= (\frac{1}{2i})^{m-1} e^{-i\sum_{n=1}^{m-1}\frac{n\pi}{m}}\prod_{n=1}^{m-1} (e^{2\frac{in\pi}{m}}-1) \cdots(1) $

Now $ e^{-i\sum_{n=1}^{m-1}\frac{n\pi}{m}} = e^\frac{-(m-1)(m)\pi\,i }{2m}= e^\frac{-(m-1)\pi\,i }{2}= (e^\frac{-\pi\,i}{2})^{(m-1)}= (-i)^{m-1}\cdots(2)$

from (1) and (2)
$\prod_{n=1}^{m-1} sin \frac{n \pi}{m}= (\frac{1}{2i})^{m-1} (-i)^{m-1}= (\frac{-1}{2})^{m-1} \prod_{n=1}^{m-1} (e^{2\frac{in\pi}{m}}-1)$
$= (\frac{1}{2})^{m-1} \prod_{n=1}^{m-1} (1- e^{2\frac{in\pi}{m}}) = (\frac{1}{2})^{m-1} \prod_{n=1}^{m-1} (1- w^n) \dots (3)$ where w is $m^{th}$ root of 1

now because w is $n^{th}$ root of 1 we have

$x^n-1 = \prod_{n=0}^{m-1} (x- w^n) = (x-1) \prod_{n=1}^{m-1} (x- w^n)\cdots(4)$
further $x^n-1 = (x-1) \sum_{n=0}^{m-1} x^n\cdots(5)$
so we have from (4) and (5)
$\prod_{n=1}^{m-1} (x- w^n) = \sum_{n=0}^{m-1} x^n$
putting x = 1 we get
$\prod_{n=1}^{m-1} (1- w^n) = \sum_{n=0}^{m-1} 1^n= m $

from (3) and above we get
$\prod_{n=1}^{m-1} \sin \frac{n \pi}{m} = \frac{m}{2^{m-1}}$
 

Similar threads

Replies
5
Views
1K
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
979
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K