Trigonometric Product Challenge sin(π/m)sin(2π/m)sin(3π/m)⋯sin(m−1)π/m=m/2^(m−1)

Click For Summary
SUMMARY

The product of sines given by the equation $\sin\frac{\pi}{m}\sin\frac{2\pi}{m}\sin\frac{3\pi}{m}\cdots\,\sin\frac{(m-1)\pi}{m}$ equals $\frac{m}{2^{m-1}}$ for integers $m \geq 2$. This result can be proven using the roots of the equation $z^m=1$, which are the complex $m$th roots of unity. The relationship between these roots and the sine function is essential in deriving the product formula.

PREREQUISITES
  • Understanding of trigonometric functions, specifically sine.
  • Familiarity with complex numbers and roots of unity.
  • Basic knowledge of mathematical proofs and identities.
  • Experience with product-to-sum identities in trigonometry.
NEXT STEPS
  • Study the properties of complex roots of unity in detail.
  • Explore the derivation of product-to-sum identities in trigonometry.
  • Investigate applications of sine products in Fourier analysis.
  • Learn about advanced mathematical proofs involving trigonometric identities.
USEFUL FOR

Mathematicians, students studying trigonometry, and anyone interested in advanced mathematical proofs and identities related to sine functions.

Greg
Gold Member
MHB
Messages
1,377
Reaction score
0
Prove that for $m=2,3,...$

$$\sin\frac{\pi}{m}\sin\frac{2\pi}{m}\sin\frac{3\pi}{m}\cdots\,\sin\frac{(m-1)\pi}{m}=\frac{m}{2^{m-1}}$$
 
Mathematics news on Phys.org
Hint:

[sp]Consider the roots of $z^m=1$[/sp]
 
greg1313 said:
Hint:

[sp]Consider the roots of $z^m=1$[/sp]

we know $\sin \, nt = \frac{1}{2i}(e^{int} - e^{-int})=\frac{1}{2i}e^{-int}(e^{2int}-1) $
lettiing $t=\frac{\pi}{m}$ we have taking the product from n = to m-1 we get
$\prod_{n=1}^{m-1} sin \frac{n \pi}{m}= (\frac{1}{2i})^{m-1} e^{-i\sum_{n=1}^{m-1}\frac{n\pi}{m}}\prod_{n=1}^{m-1} (e^{2\frac{in\pi}{m}}-1) \cdots(1) $

Now $ e^{-i\sum_{n=1}^{m-1}\frac{n\pi}{m}} = e^\frac{-(m-1)(m)\pi\,i }{2m}= e^\frac{-(m-1)\pi\,i }{2}= (e^\frac{-\pi\,i}{2})^{(m-1)}= (-i)^{m-1}\cdots(2)$

from (1) and (2)
$\prod_{n=1}^{m-1} sin \frac{n \pi}{m}= (\frac{1}{2i})^{m-1} (-i)^{m-1}= (\frac{-1}{2})^{m-1} \prod_{n=1}^{m-1} (e^{2\frac{in\pi}{m}}-1)$
$= (\frac{1}{2})^{m-1} \prod_{n=1}^{m-1} (1- e^{2\frac{in\pi}{m}}) = (\frac{1}{2})^{m-1} \prod_{n=1}^{m-1} (1- w^n) \dots (3)$ where w is $m^{th}$ root of 1

now because w is $n^{th}$ root of 1 we have

$x^n-1 = \prod_{n=0}^{m-1} (x- w^n) = (x-1) \prod_{n=1}^{m-1} (x- w^n)\cdots(4)$
further $x^n-1 = (x-1) \sum_{n=0}^{m-1} x^n\cdots(5)$
so we have from (4) and (5)
$\prod_{n=1}^{m-1} (x- w^n) = \sum_{n=0}^{m-1} x^n$
putting x = 1 we get
$\prod_{n=1}^{m-1} (1- w^n) = \sum_{n=0}^{m-1} 1^n= m $

from (3) and above we get
$\prod_{n=1}^{m-1} \sin \frac{n \pi}{m} = \frac{m}{2^{m-1}}$
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K