MHB Trigonometric Sum Prove: N=3,5,7...

Greg
Gold Member
MHB
Messages
1,377
Reaction score
0
Prove

$$\sum^{(N-1)/2}_{n=1}\cos\left[\frac{\pi}{N}(2n-1)\right]=\frac12$$

For $N=3,5,7...$.
 
Mathematics news on Phys.org
greg1313 said:
Prove

$$\sum^{(N-1)/2}_{n=1}\cos\left[\frac{\pi}{N}(2n-1)\right]=\frac12$$

For $N=3,5,7...$.
The roots of the equation $x^{2N}-1$ are $\theta^n$, where $0 \leq n\leq 2N-1$ and $\theta=e^{2\pi i/2N} = e^{\pi i/N}$.

The sum of these roots is $0$ (by Viete's formula).

The even powers of $\theta$ are the roots of $x^N - 1$; by the same argument, the sum of these roots is $0$; this means that the sum of the odd powers of $\theta$ is also $0$.

We have:
$$\begin{align}
0 &= \theta + \theta^3 +\cdots + \theta^{2N-1} \\
&= (\theta + \theta^3 + \cdots + \theta^{N-2}) + \theta^N + (\theta^{N+2} +\cdots + \theta^{2N-1}) \\
&= \sum_{n=1}^{(N-1)/2}\theta^{2n-1} + \theta^N + \sum_{n=(N+3)/2}^{N}\theta^{2n-1}
\end{align}
$$

Now, $\theta^N = -1$, $\theta^k$ and $\theta^{2N-k}$ are complex conjugates, and
$$
\theta^k + \theta^{2N-k} = 2\cos(2k\pi/2N) = 2\cos(k\pi/N)
$$

We can therefore combine the two sums and get:
$$
2\sum_{n=1}^{(N-1)/2}\cos((2n-1)\pi/N) - 1 = 0
$$

from which the result follows.
 
Thanks for the insightful solution, castor28.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top