MHB Trigonometric Sum Prove: N=3,5,7...

Click For Summary
The discussion focuses on proving the trigonometric sum for odd integers N, specifically that the sum of cosines equals 1/2. Participants engage in mathematical reasoning and provide insights into the derivation of the formula. The proof is confirmed for values of N such as 3, 5, and 7, reinforcing the validity of the equation. Acknowledgment is given to castor28 for their contribution to the solution. The conversation emphasizes the importance of understanding trigonometric identities in mathematical proofs.
Greg
Gold Member
MHB
Messages
1,377
Reaction score
0
Prove

$$\sum^{(N-1)/2}_{n=1}\cos\left[\frac{\pi}{N}(2n-1)\right]=\frac12$$

For $N=3,5,7...$.
 
Mathematics news on Phys.org
greg1313 said:
Prove

$$\sum^{(N-1)/2}_{n=1}\cos\left[\frac{\pi}{N}(2n-1)\right]=\frac12$$

For $N=3,5,7...$.
The roots of the equation $x^{2N}-1$ are $\theta^n$, where $0 \leq n\leq 2N-1$ and $\theta=e^{2\pi i/2N} = e^{\pi i/N}$.

The sum of these roots is $0$ (by Viete's formula).

The even powers of $\theta$ are the roots of $x^N - 1$; by the same argument, the sum of these roots is $0$; this means that the sum of the odd powers of $\theta$ is also $0$.

We have:
$$\begin{align}
0 &= \theta + \theta^3 +\cdots + \theta^{2N-1} \\
&= (\theta + \theta^3 + \cdots + \theta^{N-2}) + \theta^N + (\theta^{N+2} +\cdots + \theta^{2N-1}) \\
&= \sum_{n=1}^{(N-1)/2}\theta^{2n-1} + \theta^N + \sum_{n=(N+3)/2}^{N}\theta^{2n-1}
\end{align}
$$

Now, $\theta^N = -1$, $\theta^k$ and $\theta^{2N-k}$ are complex conjugates, and
$$
\theta^k + \theta^{2N-k} = 2\cos(2k\pi/2N) = 2\cos(k\pi/N)
$$

We can therefore combine the two sums and get:
$$
2\sum_{n=1}^{(N-1)/2}\cos((2n-1)\pi/N) - 1 = 0
$$

from which the result follows.
 
Thanks for the insightful solution, castor28.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
1
Views
2K
Replies
10
Views
2K
Replies
15
Views
2K
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K