MHB Trigonometric Sum Prove: N=3,5,7...

Click For Summary
The discussion focuses on proving the trigonometric sum for odd integers N, specifically that the sum of cosines equals 1/2. Participants engage in mathematical reasoning and provide insights into the derivation of the formula. The proof is confirmed for values of N such as 3, 5, and 7, reinforcing the validity of the equation. Acknowledgment is given to castor28 for their contribution to the solution. The conversation emphasizes the importance of understanding trigonometric identities in mathematical proofs.
Greg
Gold Member
MHB
Messages
1,377
Reaction score
0
Prove

$$\sum^{(N-1)/2}_{n=1}\cos\left[\frac{\pi}{N}(2n-1)\right]=\frac12$$

For $N=3,5,7...$.
 
Mathematics news on Phys.org
greg1313 said:
Prove

$$\sum^{(N-1)/2}_{n=1}\cos\left[\frac{\pi}{N}(2n-1)\right]=\frac12$$

For $N=3,5,7...$.
The roots of the equation $x^{2N}-1$ are $\theta^n$, where $0 \leq n\leq 2N-1$ and $\theta=e^{2\pi i/2N} = e^{\pi i/N}$.

The sum of these roots is $0$ (by Viete's formula).

The even powers of $\theta$ are the roots of $x^N - 1$; by the same argument, the sum of these roots is $0$; this means that the sum of the odd powers of $\theta$ is also $0$.

We have:
$$\begin{align}
0 &= \theta + \theta^3 +\cdots + \theta^{2N-1} \\
&= (\theta + \theta^3 + \cdots + \theta^{N-2}) + \theta^N + (\theta^{N+2} +\cdots + \theta^{2N-1}) \\
&= \sum_{n=1}^{(N-1)/2}\theta^{2n-1} + \theta^N + \sum_{n=(N+3)/2}^{N}\theta^{2n-1}
\end{align}
$$

Now, $\theta^N = -1$, $\theta^k$ and $\theta^{2N-k}$ are complex conjugates, and
$$
\theta^k + \theta^{2N-k} = 2\cos(2k\pi/2N) = 2\cos(k\pi/N)
$$

We can therefore combine the two sums and get:
$$
2\sum_{n=1}^{(N-1)/2}\cos((2n-1)\pi/N) - 1 = 0
$$

from which the result follows.
 
Thanks for the insightful solution, castor28.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K