Truck/Box - Accel, distance, time

  • Thread starter mybrohshi5
  • Start date
  • Tags
    Time
In summary: this is more difficult- to find the relative acceleration between non-inertial frames when there are other forces involved.
  • #1
mybrohshi5
365
0

Homework Statement



A box of mass 11.3 kg rests on the flat bed of a truck; the box is not tied down in any way. The coefficients of friction between the box and the flat bed are mu_s = 0.19 and mu_k = 0.14. The truck stops at a stop sign and then starts to move with a carelessly large acceleration of 2.20 m/s^2.

I found the force of friction first --- 15.5 N

then i found the accel of the box --- 1.37 m/s^2

Now i am having trouble finding this next part.

If the box is a distance 1.83 m from the rear of the truck when the truck starts, how much time elapses before the box falls off the truck?

Homework Equations



f=ma

vf2=vi2+2ad

v=d/t

The Attempt at a Solution



So for this last part this is what i did.

vf22= 0 + 2(1.37)(1.83)

vf= 2.24

t = 1.83/2.24

t= 0.817 seconds

this was wrong so i thought oh well the truck is accelerating right and the box is accelerating in the opposite direction so i took a new approach.

vf22= 0 + 2(2.2-1.37)(1.83)

vf= 1.74

t = 1.83/1.74

t= 1.05 seconds

but to no avail. this was wrong also so i thought again well the truck is accelerating right and the box is accelerating left so maybe i use total acceleration

vf22= 0 + 2(2.2+1.37)(1.83)

vf= 3.61

t = 1.83/3.61

t= 0.507 seconds

wrong as well :(

i don't know what else to try.

what am i doing wrong?
 
Physics news on Phys.org
  • #2
mybrohshi5 said:

Homework Statement



A box of mass 11.3 kg rests on the flat bed of a truck; the box is not tied down in any way. The coefficients of friction between the box and the flat bed are mu_s = 0.19 and mu_k = 0.14. The truck stops at a stop sign and then starts to move with a carelessly large acceleration of 2.20 m/s^2.

I found the force of friction first --- 15.5 N

then i found the accel of the box --- 1.37 m/s^2

Now i am having trouble finding this next part.

If the box is a distance 1.83 m from the rear of the truck when the truck starts, how much time elapses before the box falls off the truck?

Homework Equations



f=ma

vf2=vi2+2ad

v=d/t

The Attempt at a Solution



So for this last part this is what i did.

vf22= 0 + 2(1.37)(1.83)

vf= 2.24

t = 1.83/2.24

t= 0.817 seconds

this was wrong so i thought oh well the truck is accelerating right and the box is accelerating in the opposite direction so i took a new approach.

vf22= 0 + 2(2.2-1.37)(1.83)

vf= 1.74

t = 1.83/1.74

t= 1.05 seconds

but to no avail. this was wrong also so i thought again well the truck is accelerating right and the box is accelerating left so maybe i use total acceleration

vf22= 0 + 2(2.2+1.37)(1.83)

vf= 3.61

t = 1.83/3.61

t= 0.507 seconds

wrong as well :(

i don't know what else to try.

what am i doing wrong?
Draw a picture, with two points, on a cartesian x coordinate system. One point is the box, and the other point is the edge of the truck where the box is going to fall off. Each point is moving with constant acceleration, but different accelerations, so each is represented by some

[itex]\rm x = x_0+v_{0_x} t + \frac{1}{2}a_x t^2[/itex]

, an [itex]\rm x_1[/itex] and an [itex]\rm x_2[/itex]. You want the points to meet at some future time t' > 0, so you equate [itex]\rm x_1 (t') = x_2 (t') [/itex], and then solve for t'.

Hint: one of the [itex]\rm x_0[/itex]'s will be zero, since you can place the origin of your frame on the box, or the back of the truckbed. Plus the [itex]\rm v_0[/itex]'s are all zero since the system starts from rest.
 
Last edited:
  • #3
If i understand you correctly this is what i came up with. Does it look right?

1.83 + 0 + 1/2(1.37)t^2 = 0 + 0 + 1/2(2.2)t^2

1.83 = 1.1t^2 - 0.685t^2

1.83 = 0.415t^2

t^2 = 4.410

t = 2.10 seconds

Thanks for the help :)
 
  • #4
mybrohshi5 said:
If i understand you correctly this is what i came up with. Does it look right?

1.83 + 0 + 1/2(1.37)t^2 = 0 + 0 + 1/2(2.2)t^2

1.83 = 1.1t^2 - 0.685t^2

1.83 = 0.415t^2

t^2 = 4.410

t = 2.10 seconds

Thanks for the help :)

Yep, that's it! Good job. A lot of the physics work, in this problem, was showing that the acceleration of the truck was greater than the maximum acceleration that the static friction force could provide, which implied that it was now a kinetic friction force, and the box would slip. The last step is really very similar to projectile motion, except in one-dimension. Projectile motion problems consist of one object in 2-d (x_1,y_1) being at another point in space (x_2,y_2), at some future time t'. For this problem we have the box, for example, at x_2 at t = 0, and we want it at x_1, the back of the truck, at t' > 0:

http://img297.imageshack.us/img297/1973/trucki.jpg

[itex]\rm x_1 = \frac{1}{2} a_{truck} t^2[/itex]

[itex]\rm x_2 = L + \frac{1}{2} a_{box} t^2[/itex]

[itex]\rm x_1 (t') = x_2 (t')[/itex]

[itex]\rm \Rightarrow t' = \sqrt{\frac{2L}{a_{truck}-a_{box}}}[/itex]

Note: the place where it's very easy to make a mistake is the sign (+/-) of the acceleration components in our equations for x_1 and x_2. Even though the box is sliding to the left, relative to the truck, it's acceleration vector is pointing to the right, in the same direction as the acceleration of the truck.
 
Last edited by a moderator:
  • #5
dr_k said:
Even though the box is sliding to the left, relative to the truck, it's acceleration vector is pointing to the right, in the same direction as the acceleration of the truck.
This is a very good point: Mybro.. you made a lot of guesses on the direction of the accelerations, all of them wrong :frown:; it is sometimes difficult to see that the kinetic friction force in this case actually is providing an acceleration in the same direction of the truck;accelerations using Newton's laws are with respect to the ground. You could have solved this problem using relative accelerations: the acc of the block with respect to the truck is 2.20 -1.37= 0.83m/s^2; thus using the displacement with respect to the truck of 1.83m., then 1.83 = 1/2(0.83)t^2, solve for t and get the same result. But often relative accelerations are confusing also, so, do it the way you feel is easier (if any!).
 
  • #6
Thank you both. That all helped greatly and i can really picture it now :)
 
  • #7
PhanthomJay said:
This is a very good point: Mybro.. you made a lot of guesses on the direction of the accelerations, all of them wrong :frown:; it is sometimes difficult to see that the kinetic friction force in this case actually is providing an acceleration in the same direction of the truck;accelerations using Newton's laws are with respect to the ground. You could have solved this problem using relative accelerations: the acc of the block with respect to the truck is 2.20 -1.37= 0.83m/s^2; thus using the displacement with respect to the truck of 1.83m., then 1.83 = 1/2(0.83)t^2, solve for t and get the same result. But often relative accelerations are confusing also, so, do it the way you feel is easier (if any!).

Definitely. I've always found that motion diagrams help to get the point across. In this problem, one could say the box is sliding to the left relative to the truck, and we always know that the kinetic frictional force points in the opposite direction of relative motion, but this is confusing me even saying it. :rofl: Drawing a motion diagram, for the box, is often times very helpful:

http://img136.imageshack.us/img136/2343/truck1s.jpg
 
Last edited by a moderator:
  • #8
Everything makes sense but when we look at the free body diagram of the box as seen by an external observer, the accelaration and kinetic friction are in the same direction.
How is that possible?
Am I correct to say that the box displaces to left as seen by an obeserver on the truck and is moving to the right as seen by on observer on the ground since a' =0.83 is < a = 2.20 m/s/s??
 
  • #9
samirgaliz said:
Everything makes sense but when we look at the free body diagram of the box as seen by an external observer, the accelaration and kinetic friction are in the same direction.
How is that possible?
Am I correct to say that the box displaces to left as seen by an obeserver on the truck and is moving to the right as seen by on observer on the ground since a' =0.83 is < a = 2.20 m/s/s??

Good Morning Samirgaliz,

The box is accelerating to the left, for an observer at rest on the truck, but this observer's reference frame in non-inertial, i.e. an accelerated frame. The observer, at rest, on the ground is the inertial frame, and he/she sees both the box and the truck accelerating to the right, albeit with different accelerations. Although the problem can be solved in the non-inertial frame, this is usually beyond the scope of introductory Freshman Physics, and it's best to always choose a coordinate system that is inertial.


[PLAIN]http://img136.imageshack.us/img136/2343/truck1s.jpg

If you look carefully at the motion diagram for the box, from the inertial reference frame, it is accelerating to the right. Newton's 2nd postulate says

[tex]{\bf F}_{net} = m {\bf a}[/tex]

so the net force,

[tex]{\bf F}_{net} = {\bf f}_k[/tex]

must point in the same direction as the acceleration, i.e to the right, since m > 0.
 
Last edited by a moderator:

1. What is the formula for calculating the acceleration of a truck or box?

The formula for acceleration is: a = (Vf - Vi)/t, where a is acceleration, Vf is final velocity, Vi is initial velocity, and t is time.

2. How do you calculate the distance traveled by a truck or box?

The formula for distance is: d = Vi*t + 1/2*a*t^2, where d is distance, Vi is initial velocity, a is acceleration, and t is time.

3. What is the unit of measurement for acceleration?

The unit of measurement for acceleration is meters per second squared (m/s^2).

4. Can you calculate the acceleration of a truck or box without knowing the initial or final velocity?

No, you need both the initial and final velocity to calculate acceleration. If one is unknown, you can use the formula a = F/m, where a is acceleration, F is force, and m is mass.

5. How does the mass of a truck or box affect its acceleration?

The greater the mass of the truck or box, the greater the force needed to accelerate it at the same rate. This means that a heavier truck or box will have a slower acceleration compared to a lighter one.

Similar threads

  • Introductory Physics Homework Help
Replies
6
Views
699
  • Introductory Physics Homework Help
Replies
10
Views
4K
  • Introductory Physics Homework Help
Replies
5
Views
1K
  • Introductory Physics Homework Help
Replies
4
Views
818
  • Introductory Physics Homework Help
Replies
2
Views
204
  • Introductory Physics Homework Help
Replies
15
Views
2K
  • Introductory Physics Homework Help
Replies
4
Views
16K
  • Introductory Physics Homework Help
Replies
24
Views
5K
  • Introductory Physics Homework Help
Replies
6
Views
1K
  • Introductory Physics Homework Help
Replies
2
Views
3K
Back
Top