Truss behaviour, load-deformation curve

AI Thread Summary
The discussion focuses on analyzing an 18 m by 1.2 m truss using Abaqus for nonlinear analysis with S355 material, revealing an unexpected abrupt drop in the load-displacement curve after yielding. Concerns are raised about the low yielding strength and the absence of buckling or joint failure signs. Participants suggest examining the deformed geometry plot for better visualization and scaling of peak deformation. They also recommend performing hand calculations to compare stress values in the truss members with FEA results. The importance of accurately modeling support conditions and joint rigidity is emphasized for a comprehensive understanding of truss behavior.
SofiaB
Messages
2
Reaction score
0
TL;DR Summary
Hello everyone! I am just trying to verify if the results I obtained for my truss behaviour analysis are correct
Hello everyone!
I am analysing an 18 m per 1.2 m truss, simply supported, with 140x5 chords and 90x8 braces. I then loaded the superior nodes with 500 KN. The top nodes were also laterally constrained to prevent out-of-plane displacements.
After imputing the structure in Abaqus (FEA software), I obtained the load-displacement curves in the top nodes where the concentrated loads were applied. I should note that I am doing a nonlinear analysis with a nonlinear material(S355).
What I found weird was the abrupt drop in the curve after yielding, as well as the fact that the value of the yielding strength seems very small. Can someone help me understand if this behaviour is correct? I will leave some pictures of the truss, the material input and the load-displacement curves for each node for better understatement.

Should also note that ultimately what I am studying is the joints behaviour (in a further analysis I will increase their rigidity) and thus I want to explore the behaviour above the yield limit.

Thanks in advance!
 

Attachments

  • aaaaa.PNG
    aaaaa.PNG
    7.2 KB · Views: 210
  • 7.PNG
    7.PNG
    20.5 KB · Views: 248
  • Inked0_LI.jpg
    Inked0_LI.jpg
    16.3 KB · Views: 201
  • 8.PNG
    8.PNG
    19.5 KB · Views: 240
Engineering news on Phys.org
I like to look at a deformed geometry plot on all of my FEA analyses. Possible failure modes of a truss include plastic buckling of a compression member, elastic (Euler) buckling of a compression member, plastic yielding of a tension member, lateral buckling of the top member (which you restrained), and joint failure. The deformed geometry plot shows this, and is also useful as a check on your restraints and loads. And on how well you model joint rigidity, when you get that far.

It's also a good idea to do a hand calculation for the truss element that yielded or buckled.
 
Last edited:
jrmichler said:
I like to look at a deformed geometry plot on all of my FEA analyses. Possible failure modes of a truss include plastic buckling of a compression member, elastic (Euler) buckling of a compression member, plastic yielding of a tension member, lateral buckling of the top member (which you restrained), and joint failure. The deformed geometry plot shows this, and is also useful as a check on your restraints and loads. And on how well you model joint rigidity, when you get that far.

It's also a good idea to do a hand calculation for the truss element that yielded or buckled.
There were no signs of buckling as well as joint failure which I also found a little weird. I will leave some pictures of the deformed configuration and von mises stress values.
 

Attachments

  • Capturedeform.PNG
    Capturedeform.PNG
    20.5 KB · Views: 188
  • Capturedeform2.PNG
    Capturedeform2.PNG
    17.3 KB · Views: 176
The deformed geometry plot needs to be scaled such that the peak deformation is larger and more visible. Typical FEA defaults make the peak deformation about 10% of the truss depth. You might need to put a scale factor in there.

Are the end supports simple supports, or rigid? It makes a difference. One end support should restrain in both horizontal and vertical directions, the other should restrain in the vertical direction only. Both should restrain in the out of page direction.

This is a simple truss to analyze by hand. What is the hand calculated stress in the top and bottom members near the middle of the truss and away from the joints? How does that compare to the FEA values?
 
Hi all, I have a question. So from the derivation of the Isentropic process relationship PV^gamma = constant, there is a step dW = PdV, which can only be said for quasi-equilibrium (or reversible) processes. As such I believe PV^gamma = constant (and the family of equations) should not be applicable to just adiabatic processes? Ie, it should be applicable only for adiabatic + reversible = isentropic processes? However, I've seen couple of online notes/books, and...
Thread 'How can I find the cleanout for my building drain?'
I am a long distance truck driver, but I recently completed a plumbing program with Stratford Career Institute. In the chapter of my textbook Repairing DWV Systems, the author says that if there is a clog in the building drain, one can clear out the clog by using a snake augur or maybe some other type of tool into the cleanout for the building drain. The author said that the cleanout for the building drain is usually near the stack. I live in a duplex townhouse. Just out of curiosity, I...
I have an engine that uses a dry sump oiling system. The oil collection pan has three AN fittings to use for scavenging. Two of the fittings are approximately on the same level, the third is about 1/2 to 3/4 inch higher than the other two. The system ran for years with no problem using a three stage pump (one pressure and two scavenge stages). The two scavenge stages were connected at times to any two of the three AN fittings on the tank. Recently I tried an upgrade to a four stage pump...
Back
Top