MHB Trying to investigate and find the sensitivity of function

Click For Summary
SUMMARY

The discussion focuses on the sensitivity of the function F(x) = sqrt(x) to errors in x, particularly when x is perturbed by a small value ϵ. The Kappa value, representing the condition number, is established as 1/2, indicating the amplification of relative errors. At x=0, the sensitivity is undefined due to infinite relative error. The absolute sensitivity to errors in x is determined to be 1/(2√x), while the relative sensitivity is consistently 1/2.

PREREQUISITES
  • Understanding of calculus, specifically derivatives and Taylor approximations
  • Familiarity with the concept of condition numbers in numerical analysis
  • Knowledge of absolute and relative error definitions
  • Basic understanding of limits in mathematical functions
NEXT STEPS
  • Study the implications of condition numbers in numerical stability
  • Explore Taylor series expansions for various functions
  • Learn about error propagation in numerical computations
  • Investigate the behavior of functions at singular points, such as x=0
USEFUL FOR

Mathematicians, engineers, and data scientists focused on numerical analysis, error sensitivity, and function behavior in computational contexts.

akerman
Messages
26
Reaction score
0
I have a question about function F(x) = sqrt(x)

I found that it has Kappa value equal to 1/2

I am not too sure what happens if when x = 0 is it just a minimum?

But now I am trying to investigate and find the sensitivity of F(x) to errors in x when we use x+ϵ, where ϵ is small.
 
Mathematics news on Phys.org
Re: trying to investigate and find the sensitivity of function

akerman said:
I have a question about function F(x) = sqrt(x)

I found that it has Kappa value equal to 1/2

I am not too sure what happens if when x = 0 is it just a minimum?

But now I am trying to investigate and find the sensitivity of F(x) to errors in x when we use x+ϵ, where ϵ is small.

Welcome to MHB, akerman! :)

I am assuming that with a Kappa value you mean the condition number.
If so then we have:
$$\frac{|\Delta y|}{|y|} = \kappa \frac{|\Delta x|}{|x|}$$
where $y=F(x)$, where $\Delta x$ is the error in $x$, and $\Delta y$ is the error in $y$.
In other words: $\kappa$ gives the amplification of the relative error.

At $x=0$, $x$ has an infinite relative error (we're dividing by zero), so $\kappa$ is not defined there.
Since $F(0)=0$, the relative error of $y$ is also infinite.

We can calculate $\kappa$ with:
$$\kappa = \left| \frac{x \cdot F'(x)}{F(x)} \right|$$
This stems from the first order Taylor approximation:
$$F(x + \Delta x) \approx F(x) + \Delta x \cdot F'(x)$$

Since we are using an approximation, the end result is also an approximation.
In particular for points where $F'(x)$ or $F''(x)$ are not defined, the relationship will break down.
This is in particular the case for your function at $x=0$.
 
Re: trying to investigate and find the sensitivity of function

I like Serena said:
Welcome to MHB, akerman! :)

I am assuming that with a Kappa value you mean the condition number.
If so then we have:
$$\frac{|\Delta y|}{|y|} = \kappa \frac{|\Delta x|}{|x|}$$
where $y=F(x)$, where $\Delta x$ is the error in $x$, and $\Delta y$ is the error in $y$.
In other words: $\kappa$ gives the amplification of the relative error.

At $x=0$, $x$ has an infinite relative error (we're dividing by zero), so $\kappa$ is not defined there.
Since $F(0)=0$, the relative error of $y$ is also infinite.

We can calculate $\kappa$ with:
$$\kappa = \left| \frac{x \cdot F'(x)}{F(x)} \right|$$
This stems from the first order Taylor approximation:
$$F(x + \Delta x) \approx F(x) + \Delta x \cdot F'(x)$$

Since we are using an approximation, the end result is also an approximation.
In particular for points where $F'(x)$ or $F''(x)$ are not defined, the relationship will break down.
This is in particular the case for your function at $x=0$.

I still don't get it...
So what is the sensitivity of f(x) to errors in x?
And if we consider limit x→0, how many digits can one compute x√ when x is known to an error of 10^−16?

Can you give more detailed explanation.
thanks
 
Re: trying to investigate and find the sensitivity of function

akerman said:
I still don't get it...
So what is the sensitivity of f(x) to errors in x?

Since the derivative of $\sqrt x$ is $\frac 1 {2\sqrt x}$, Taylor's approximation gives us:
$$\sqrt{x+ε} \approx \sqrt{x} + ε \cdot \frac{1}{2\sqrt x}$$
So if the error in $x$ is $ε$, then the error in $√x$ is approximately $ε \cdot \frac{1}{2\sqrt x}$.

The so called absolute sensitivity to errors in x is $\frac{1}{2\sqrt x}$, since an error gets multiplied by this amount.

The relative sensitivity is $\frac 1 2$, since relative errors get multiplied by this amount.
A relative error is the error relative to the value measured. For $x$ this is $ε / x$.
And if we consider limit x→0, how many digits can one compute x√ when x is known to an error of 10^−16?

I do not understand your question.
In the limit x→0, √x is simply 0.

However, if x is a regular non-zero value known with an error of $10^{−16}$, then the resultant √x will have an absolute error of $10^{−16} \cdot \frac{1}{2\sqrt x}$ and a relative error of $0.5 \cdot 10^{−16}$.

Can you give more detailed explanation.
thanks

Where would you like more details?
 
The lastest answer is just something I was looking for.
So having a question such as "how many digits can one compute x√ when x is known to an error of 10^−16?" Can I simply say that absolute error of 10−16⋅12x√ and a relative error of 0.5⋅10^−16?
Also if we have x= x+ ε
Can I specify exactly what the ε is for y =x√ ? Or is it just an assumption that is it a small number?
 
akerman said:
The lastest answer is just something I was looking for.
So having a question such as "how many digits can one compute x√ when x is known to an error of 10^−16?" Can I simply say that absolute error of 10−16⋅12x√ and a relative error of 0.5⋅10^−16?

The term "how many digits" is somewhat confusing.
It can typically mean either how many digits behind the decimal point, or it can mean how many significant digits.
Can you clarify which one is intended?
Similarly, when you say "error" do you mean an absolute error or a relative error?

If you have 16 significant digits, that means that your relative error is $10^{-16}$.
In this case the resultant relative error is $0.5 \cdot 10^{-16}$, meaning you have slightly over 16 significant digits (usually treated as just 16).

What you write about the errors is correct, assuming your initial error is an absolute error.
However, that is apparently not what is being asked, since the question asks "how many digits".
Also if we have x= x+ ε
Can I specify exactly what the ε is for y =x√ ? Or is it just an assumption that is it a small number?

"Exactly" is a strong word.
If you want to have the "exact" error in y, you need to calculate $\sqrt{x+ε}-\sqrt x$.
If you are satisfied with the approximate error, you can use the formulas I gave.
 
Now I got it. Thanks for help. I believe you the only person in number of forum who could explain and answer it.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K