DrChinese
Science Advisor
Homework Helper
Gold Member
- 8,498
- 2,128
ThomasT said:Is it possible that the equation is wrong for the experimental situation, but that Bell was, in a most important sense, correct to write it that way vis EPR? Haven't hidden variables historically (vis EPR) been taken to refer to underlying parameters that would affect the prediction of individual results? If so, then wouldn't a formulation of the joint situation in terms of that variable have to take the form of Bell's ansatz? If so, then Bell's ansatz is, in that sense, correct. However, what if the underlying parameter that's being jointly measured isn't the underlying parameter that determines individual results? For example, if it's the relationship between the optical vectors of disturbances emitted during the same atomic transition, and not the optical vectors themselves, that's being jointly measured, then wouldn't that require a different formulation for the joint situation?
Do the assumptions that (1) this relationship is created during the common origin of the disturbances via emission by the same atom, and that (2) it therefore exists prior to measurement by the crossed polarizers, and that (3) counter-propagating disturbances are identically polarized (though the polarization vector of any given pair is random and indeterminable), contradict the qm treatment of this situation? If not, then might the foregoing be taken as an understanding of violations of BIs due to nonseparability of the joint entangled state?
Any criticisms of, or comments on, any part of the above viewpoint are appreciated.
QM does NOT imply that there anything exists prior to and independent of measurement, as we have told you at least 106 times. There are no local counter-propagating influences in the sense you describe either.