Two candles making shadows of one another on opposite walls

Click For Summary

Homework Help Overview

The discussion revolves around a problem involving two candles casting shadows on opposite walls. The original poster analyzes the burning rates of the candles and their effect on the lengths of the shadows over time, incorporating geometric relationships and similarity of triangles in their reasoning.

Discussion Character

  • Exploratory, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • The original poster attempts to derive expressions for the velocities of the shadows based on the heights of the candles as they burn. They express concern about discrepancies between their results and those in the text, particularly regarding the sign of the velocities.

Discussion Status

Participants are actively engaging with the original poster's reasoning, questioning the definitions of velocity and the direction of shadow movement. Some suggest that the original poster's approach may lead to negative values for shadow speeds, indicating a need for clarification on the conventions used in measuring distances.

Contextual Notes

There is an assumption that the burning rates of the candles differ, with the original poster stating ##t_1>t_2##. Participants also note that the problem may be interpreted differently based on whether distances are measured from the top or bottom of the candles.

brotherbobby
Messages
766
Reaction score
171
Homework Statement
Two candles of equal height ##h## at the initial moment are at a distance ##a## from each other. The distance between each candle and the nearest wall is also ##a## (see figure below). With what speed will the shadows of the candles move along the walls if one candles burns down during a time ##t_1## and the other during a time ##t_2##?
Relevant Equations
1. (Uniform) Velocity of a point along a line : ##v = \dfrac{dx}{dt}##

2. For two similar right angled triangles of heights ##h_1## and ##h_2## and bases ##b_1## and ##b_2## : ##\quad\dfrac{h_2}{b_2}=\dfrac{h_2}{b_2}##
1715325726667.png


I copy and paste the problem as it appears in the text along with the diagram alongside. It is clear from the image that the base of the shadows don't move - only their tops would move either up or down. Let us assume the time ##t_1>t_2##, implying that candle 1 burns at a slower rate. How would things appear after a time of burning ##t## for both candles?

1715325865862.png

I draw my own diagram, showing the situation after a time ##t##. The rate at which the candles burn ##\small{r_i=\dfrac{h}{t_i}}##. The height of candle 1 after a time ##t## : ##\small{h_1 = h-r_1t=h-\dfrac{h}{t_1}t\Rightarrow h_1=h\left(1-\dfrac{t}{t_1}\right)\quad (1)}.## Likewise, ##\small{h_2= h\left(1-\dfrac{t}{t_2}\right)\quad (2)}.##

If the shadows have lengths ##s_1, s_2##, I have to find their velocities as the candles burn, i.e. ##\boxed{\dot{s_1}=?\;,\;\dot{s_2}=?}##.

In ##\triangle's## CDO and EFO, we have (by similarity) : ##\small{\dfrac{h_1-s_2}{2a}=\dfrac{h_2-s_2}{a}\Rightarrow h_1-s_2 = 2(h_2-s_2)\Rightarrow s_2=2h_2-h_1}=2h\left(1-\dfrac{t}{t_2}\right)-h\left(1-\dfrac{t}{t_1}\right)## upon using equations ##(1),(2)## above.
This simplifies to ##\small{s_2=h+h\left(\dfrac{1}{t_1}-\dfrac{2}{t_2}\right)t\Rightarrow \dot{s}_2=h\left(\dfrac{1}{t_1}-\dfrac{2}{t_2}\right)}\Rightarrow \boxed{\boldsymbol{\dot{s}_2=\dfrac{h}{t_1t_2}(t_2-2t_1)}}\quad (3)##
Since ##t_1>t_2,\; \dot{s}_2=\text{-ve}##.

From similar ##\triangle's## ABO and EFO, ##\small{\dfrac{s_1-s_2}{3a}=\dfrac{h_2-s_2}{a}\Rightarrow s_1-s_2=3(h_2-s_2)}##
##\small{\Rightarrow s_1=3h_2-2s_2=3\left(1-\dfrac{t}{t_2}\right)-2h-2h\left(\dfrac{1}{t_2}-\dfrac{2}{t_2}\right)t}## after using equations ##(2),(3)##.

This reduces to ##\small{s_1=h-\dfrac{2h}{t_1}t+\dfrac{h}{t_2}t\Rightarrow \dot{s}_1=-\dfrac{2h}{t_1}+\dfrac{h}{t_2}}\Rightarrow \boxed{\boldsymbol{\dot{s}_1=\dfrac{h}{t_1t_2}(t_1-2t_2)}}\quad (4)##
1715325971780.png


My answers miss those of the text by a change of sign.

Request : Where do you think am mistaken?
 
Last edited:
Physics news on Phys.org
You have defined the velocity in the opposite direction to the text. This will make it differ by a sign.

The problem also asks for speed, not velocity, so technically the correct answer is the absolute value of these expressions (which make them the same). The difference being that your expressions will always have (at least) one negative value.
 
Orodruin said:
You have defined the velocity in the opposite direction to the text. This will make it differ by a sign.
I think I should look into first myself and then post the text solution. I measured distances from the bottom up, taking the base as point 0.

1715327662116.png


Yes you were right. They are taking distances from the top down.

Orodruin said:
The difference being that your expressions will always have (at least) one negative value.

Yes that is what am not sure of. Let us have the expressions again, given my conventions.

Shadow ##s_1## moves with a speed ##\quad\small{\boxed{\boldsymbol{\dot{s}_1=\dfrac{h}{t_1t_2}(t_1-2t_2)}}}##

Shadow ##s_2## moves with a speed ##\quad\small{\boxed{\boldsymbol{\dot{s}_2=\dfrac{h}{t_1t_2}(t_2-2t_1)}}}##

I assumed ##t_1>t_2##. However, if ##t_1<2t_2\Rightarrow \dot{s}_1=-ve##. Either way, ##\dot{s}_2=-ve##.

So it could be that both shadows are moving down?
 
brotherbobby said:
So it could be that both shadows are moving down?
Of course, consider the case when both candles burn at the same speed. Then both shadows will move down at that speed.
 

Similar threads

  • · Replies 25 ·
Replies
25
Views
2K
Replies
23
Views
2K
Replies
17
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 20 ·
Replies
20
Views
1K
Replies
13
Views
1K
Replies
8
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K