Arnold1
- 16
- 0
Hi.
Here is a problem I've been trying to solve for some time now. Maybe you could help me.
We have two sets
\mathcal {Q} is a set of those circles in the plane such that for any x \in \mathbb{R} there exists a circle O \in \mathcal {Q} which intersects x axis in (x,0).\mathcal {T} is a set of those circles in the plane such that for any x \in \mathbb{R} there exists a circle O \in \mathcal {T} which is tangent to x axis in (x,0).
We need to show that in each of these sets there exist at least two different circles whose intersection isn't empty.
It seems obvious that card (Q) \ge card (\mathbb{R}). Maybe we could somehow identify each circle with a different rational number?
Here is a problem I've been trying to solve for some time now. Maybe you could help me.
We have two sets
\mathcal {Q} is a set of those circles in the plane such that for any x \in \mathbb{R} there exists a circle O \in \mathcal {Q} which intersects x axis in (x,0).\mathcal {T} is a set of those circles in the plane such that for any x \in \mathbb{R} there exists a circle O \in \mathcal {T} which is tangent to x axis in (x,0).
We need to show that in each of these sets there exist at least two different circles whose intersection isn't empty.
It seems obvious that card (Q) \ge card (\mathbb{R}). Maybe we could somehow identify each circle with a different rational number?