Two Equations for Average Velocity?

  • Thread starter Thread starter Spooky123
  • Start date Start date
  • Tags Tags
    Average velocity
Click For Summary
SUMMARY

The discussion clarifies the concept of average velocity, emphasizing that it is defined as the change in position vector divided by the change in time, not to be confused with average speed, which is total distance divided by total time. The participants calculate average velocity using vectors R1 = <21,0,0>m and R2 = <11.31,0,11.31>m, finding Delta R = R2 - R1 = <-9.69,0,11.31>. They also compute the respective times t1 and t2 based on given speeds, ultimately confirming that the formula for average velocity is valid when using the correct total displacement and total time.

PREREQUISITES
  • Understanding of vector mathematics and operations
  • Familiarity with the concepts of displacement and distance
  • Knowledge of average velocity and average speed definitions
  • Basic proficiency in physics, particularly kinematics
NEXT STEPS
  • Study vector operations in physics, focusing on displacement calculations
  • Learn about kinematic equations and their applications in motion analysis
  • Explore the differences between average speed and average velocity in various contexts
  • Investigate the implications of motion along curved paths on average speed and velocity
USEFUL FOR

Students of physics, educators teaching kinematics, and anyone seeking to deepen their understanding of motion concepts, particularly in relation to vectors and average velocity calculations.

Spooky123
Messages
3
Reaction score
0
Homework Statement
You walk in the direction of the unit vector <1,0, 0> a distance of214 m at a constant speed of 3.6 m/s, then turn and walk in the direction of the unit vector <1, 0, 1>/ root 2 for a distance of 16 m at a constant speed of 3 m/s. What was your average velocity?
Relevant Equations
Vavg = delta r / delta t
I know that average velocity is the change in position over the change in time. But im getting conflicting views from other sources saying thats its the total distance divided by the total time. For this question we would first find the respective vectors by multiplying the distance with the given unit vectors. Then according to the average velocity formula we would find the difference between both vectors (change in position). To find the respective times, we would use the distance divided by the speed given for each. Using the final formula for avg velocity should give us the answer.

R1 = <21,0,0>m
R2 = <11.31,0,11.31>m
Delta R = R2 - R1
= <-9.69,0,11.31>

t1 = d1/v1 = 21/3.6 = 5.833
t2 = d2/v2 = 16/3 = 5.33
Delta t = t2 - t1 = -0.5

Thus, Average velocity = Delta R / Delta T?

Is this the right way to go about it?
 
Physics news on Phys.org
Hi @Spooky123. Welcome to PF.

Spooky123 said:
I know that average velocity is the change in position over the change in time.
Ok but it might be clearer to say that average velocity is the total displacement divided by the total time taken.

Spooky123 said:
But im getting conflicting views from other sources saying thats its the total distance divided by the total time.
Average velocity is a vector. The total distance covered (a scalar) divided by the total time taken (also a scalar) gives the average speed, not the average velocity.

Spooky123 said:
For this question we would first find the respective vectors by multiplying the distance with the given unit vectors. Then according to the average velocity formula we would find the difference between both vectors (change in position). To find the respective times, we would use the distance divided by the speed given for each. Using the final formula for avg velocity should give us the answer.

R1 = <21,0,0>m
R2 = <11.31,0,11.31>m
Delta R = R2 - R1
= <-9.69,0,11.31>
No. <21, 0, 0>m is not a position vector, It's a displacement (change in position). Similarly for <11.31, 0 , 11.31>m.

To get the total displacment you must add the individual displacements. E.g. if you move 5m in the +x-direction and then 10m in the +x-direction, your total displacement is 15m in the x direction.

Spooky123 said:
t1 = d1/v1 = 21/3.6 = 5.833
t2 = d2/v2 = 16/3 = 5.33
Delta t = t2 - t1 = -0.5
No. If the first part of the journey takes time t₁ and the second part takes time t₂, the total time for the whole journey is ???

Spooky123 said:
Thus, Average velocity = Delta R / Delta T?

Is this the right way to go about it?
If ΔR were the correctly calculated total displacement and ΔT were the correctly calculated total time, that formula would be correct.
 
  • Like
Likes MatinSAR and Spooky123
Average velocity = Change in position vector divided by time interval.
Average speed = Total distance traveled (odometer reading from start to finish) divided by time needed to travel that distance.

Two different ideas. If it takes you time ##T## to go around a complete circle of radius ##R##, then
Average velocity = Zero.
Average speed = ##\dfrac{2\pi R}{T}.##

Your approach for finding the average velocity is correct. Note that for motion at constant velocity in a straight line, the average velocity has magnitude equal to the average speed. You rely on this idea to find the correct times required to travel in each direction separately and then add the times to find the total time over which the displacement takes place. Note that when an object moves at constant speed along a curved line, the average speed and the average velocity have different magnitudes.
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

Replies
40
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
Replies
2
Views
2K
Replies
4
Views
2K
Replies
8
Views
1K
Replies
12
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K