Suppose a particle in frame S moves with acceleration [itex]a_{x}[/itex] and velocity [itex]u_{x}[/itex] at a given instance in the x-direction. I wanted to find the acceleration in a frame S' moving with velocity v in the positive x-direction with respect to frame S. To do this I used the following approach:(adsbygoogle = window.adsbygoogle || []).push({});

[itex]a_{x}=\frac{du_{x}}{dt}[/itex] and [itex]a'_{x}=\frac{du'_{x}}{dt'}[/itex]

Using the chain rule,

[itex]a'_{x} = \frac{du'_{x}}{dt'} = \frac{du'_{x}}{du_{x}} \frac{du_{x}}{dt'} = \frac{du'_{x}}{du_{x}} \frac{du_{x}}{dt} \frac{dt}{dt'} = a_{x} \frac{du'_{x}}{du_{x}} \frac{dt}{dt'} [/itex]

Using the velocity transformation,

[itex]\large \frac{du'_{x}}{du_{x}} = \frac{1- \frac{v^{2}}{c^{2}} }{ 1 - \frac{u_{x} v} {c^{2}} } [/itex]

Similarly from the Lorentz transformations:

[itex]\large \frac{dt}{dt'} = \frac{\sqrt{1-\frac{v^{2}}{c^{2}}} } {1 - \frac{u_{x} v} {c^{2}}}[/itex]

Thus,

[itex]\large a'_{x} = a_{x} \frac{(1- \frac{v^{2}}{c^{2}})^{3/2}}{(1-\frac{u_{x}v}{c^{2}})^{3}} [/itex]

Now I know this formula is correct, as it listed in Resnick's and French's introductory books on Special relativity. However in W. Rindler's book on the subject, the author shows the relativistic acceleration as:

[itex]\large a'_{x} = \gamma^{3} a_{x}[/itex]

How come there are two formulas for this quantity, one of which does not even refer to the speed of the particle? I have posted my working so that maybe someone can understand and help discriminate between these formulas.

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Two expression for relativistic acceleration

Loading...

Similar Threads - expression relativistic acceleration | Date |
---|---|

B Light-clock and time dilation [was: Hydrogen atom expressed mathematically] | Nov 25, 2017 |

I Validity of a differential expression with contravariant | Jan 2, 2017 |

I Validity of a differential expression | Jan 1, 2017 |

Extra factor of u in the expression for relativistic momentum? | Oct 27, 2014 |

(noob thread) Expression for the Relativistic Doppler Effect at Arbitrary Angles) | Mar 2, 2011 |

**Physics Forums - The Fusion of Science and Community**